448 research outputs found
Anderson Localization in a String of Microwave Cavities
The field distributions and eigenfrequencies of a microwave resonator which
is composed of 20 identical cells have been measured. With external screws the
periodicity of the cavity can be perturbed arbitrarily. If the perturbation is
increased a transition from extended to localized field distributions is
observed. For very large perturbations the field distributions show signatures
of Anderson localization, while for smaller perturbations the field
distribution is extended or weakly localized. The localization length of a
strongly localized field distribution can be varied by adjusting the
penetration depth of the screws. Shifts in the frequency spectrum of the
resonator provide further evidence for Anderson localization.Comment: 7 pages RevTex, to be published in Phys. Rev.
Mode Fluctuation Distribution for Spectra of Superconducting Microwave Billiards
High resolution eigenvalue spectra of several two- and three-dimensional
superconducting microwave cavities have been measured in the frequency range
below 20 GHz and analyzed using a statistical measure which is given by the
distribution of the normalized mode fluctuations. For chaotic systems the limit
distribution is conjectured to show a universal Gaussian, whereas integrable
systems should exhibit a non-Gaussian limit distribution. For the investigated
Bunimovich stadium and the 3D-Sinai billiard we find that the distribution is
in good agreement with this prediction. We study members of the family of
limacon billiards, having mixed dynamics. It turns out that in this case the
number of approximately 1000 eigenvalues for each billiard does not allow to
observe significant deviations from a Gaussian, whereas an also measured
circular billiard with regular dynamics shows the expected difference from a
Gaussian.Comment: 7 pages, RevTex, 5 postscript figure, to be published in Phys. Rev.
E. In case of any problems contact A. Baecker ([email protected]) or H.
Rehfeld ([email protected]
Experimental vs. Numerical Eigenvalues of a Bunimovich Stadium Billiard -- A Comparison
We compare the statistical properties of eigenvalue sequences for a gamma=1
Bunimovich stadium billiard. The eigenvalues have been obtained by two ways:
one set results from a measurement of the eigenfrequencies of a superconducting
microwave resonator (real system) and the other set is calculated numerically
(ideal system). The influence of the mechanical imperfections of the real
system in the analysis of the spectral fluctuations and in the length spectra
compared to the exact data of the ideal system are shown. We also discuss the
influence of a family of marginally stable orbits, the bouncing ball orbits, in
two microwave stadium billiards with different geometrical dimensions.Comment: RevTex, 8 pages, 8 figures (postscript), to be published in Phys.
Rev.
Wave Dynamical Chaos in a Superconducting Three-Dimensional Sinai Billiard
Based on very accurate measurements performed on a superconducting microwave
resonator shaped like a desymmetrized three-dimensional (3D) Sinai billiard, we
investigate for the first time spectral properties of the vectorial Helmholtz,
i.e. non-quantum wave equation for a classically totally chaotic and
theoretically precisely studied system. We are thereby able to generalize some
aspects of quantum chaos and present some results which are consequences of the
polarization features of the electromagnetic waves.Comment: 4 pages RevTex; 4 postscript figures; to be published in Phys. Rev.
Lett.; Info: [email protected]
'Word from the street' : when non-electoral representative claims meet electoral representation in the United Kingdom
Taking the specific case of street protests in the UK – the ‘word from the street’– this article examines recent (re)conceptualizations of political representation, most particularly Saward’s notion of ‘representative claim’. The specific example of nonelectoral claims articulated by protestors and demonstrators in the UK is used to illustrate: the processes of making, constituting, evaluating and accepting claims for and by constituencies and audiences; and the continuing distinctiveness of claims based upon electoral representation. Two basic questions structure the analysis: first, why would the political representative claims of elected representatives trump the nonelectoral claims of mass demonstrators and, second, in what ways does the ‘perceived legitimacy’ of the former differ from the latter
Coupled Microwave Billiards as a Model for Symmetry Breaking
Two superconducting microwave billiards have been electromagnetically coupled
in a variable way. The spectrum of the entire system has been measured and the
spectral statistics analyzed as a function of the coupling strength. It is
shown that the results can be understood in terms of a random matrix model of
quantum mechanical symmetry breaking -- as e.g. the violation of parity or
isospin in nuclear physics.Comment: 4 pages, 5 figure
Comparison of the oxygen isotope signatures in speleothem records and iHadCM3 model simulations for the last millennium
Improving the understanding of changes in the mean and variability of climate variables as well as their interrelation is crucial for reliable climate change projections. Comparisons between general circulation models and paleoclimate archives using indirect proxies for temperature or precipitation have been used to test and validate the capability of climate models to represent climate changes. The oxygen isotopic ratio δ18O, a proxy for many different climate variables, is routinely measured in speleothem samples at decadal or higher resolution, and single specimens can cover full glacial–interglacial cycles. The calcium carbonate cave deposits are precisely dateable and provide well preserved (semi-)continuous albeit multivariate climate signals in the lower and mid-latitudes, where the measured δ18O in the mineral does not directly represent temperature or precipitation. Therefore, speleothems represent suitable archives to assess climate model abilities to simulate climate variability beyond the timescales covered by meteorological observations (101–102 years).
Here, we present three transient isotope-enabled simulations from the Hadley Center Climate Model version 3 (iHadCM3) covering the last millennium (850–1850 CE) and compare them to a large global dataset of speleothem δ18O records from the Speleothem Isotopes Synthesis and AnaLysis (SISAL) database version 2 (Comas-Bru et al., 2020b). We systematically evaluate offsets in mean and variance of simulated δ18O and test for the main climate drivers recorded in δ18O for individual records or regions.
The time-mean spatial offsets between the simulated δ18O and the speleothem data are fairly small. However, using robust filters and spectral analysis, we show that the observed archive-based variability of δ18O is lower than simulated by iHadCM3 on decadal and higher on centennial timescales. Most of this difference can likely be attributed to the records' lower temporal resolution and averaging or smoothing processes affecting the δ18O signal, e.g., through soil water residence times. Using cross-correlation analyses at site level and modeled grid-box level, we find evidence for highly variable but generally low signal-to-noise ratios in the proxy data. This points to a high influence of cave-internal processes and regional climate particularities and could suggest low regional representativity of individual sites. Long-range strong positive correlations dominate the speleothem correlation network but are much weaker in the simulation. One reason for this could lie in a lack of long-term internal climate variability in these model simulations, which could be tested by repeating similar comparisons with other isotope-enabled climate models and paleoclimate databases
- …