2,336 research outputs found

    Distribution of Mutual Information

    Full text link
    The mutual information of two random variables i and j with joint probabilities t_ij is commonly used in learning Bayesian nets as well as in many other fields. The chances t_ij are usually estimated by the empirical sampling frequency n_ij/n leading to a point estimate I(n_ij/n) for the mutual information. To answer questions like "is I(n_ij/n) consistent with zero?" or "what is the probability that the true mutual information is much larger than the point estimate?" one has to go beyond the point estimate. In the Bayesian framework one can answer these questions by utilizing a (second order) prior distribution p(t) comprising prior information about t. From the prior p(t) one can compute the posterior p(t|n), from which the distribution p(I|n) of the mutual information can be calculated. We derive reliable and quickly computable approximations for p(I|n). We concentrate on the mean, variance, skewness, and kurtosis, and non-informative priors. For the mean we also give an exact expression. Numerical issues and the range of validity are discussed.Comment: 8 page

    Essential spectra and exponential estimates of eigenfunctions of lattice operators of quantum mechanics

    Full text link
    This paper is devoted to estimates of the exponential decay of eigenfunctions of difference operators on the lattice Z^n which are discrete analogs of the Schr\"{o}dinger, Dirac and square-root Klein-Gordon operators. Our investigation of the essential spectra and the exponential decay of eigenfunctions of the discrete spectra is based on the calculus of so-called pseudodifference operators (i.e., pseudodifferential operators on the group Z^n) with analytic symbols and on the limit operators method. We obtain a description of the location of the essential spectra and estimates of the eigenfunctions of the discrete spectra of the main lattice operators of quantum mechanics, namely: matrix Schr\"{o}dinger operators on Z^n, Dirac operators on Z^3, and square root Klein-Gordon operators on Z^n

    Coarsening in potential and nonpotential models of oblique stripe patterns

    Full text link
    We study the coarsening of two-dimensional oblique stripe patterns by numerically solving potential and nonpotential anisotropic Swift-Hohenberg equations. Close to onset, all models exhibit isotropic coarsening with a single characteristic length scale growing in time as t1/2t^{1/2}. Further from onset, the characteristic lengths along the preferred directions x^\hat{x} and y^\hat{y} grow with different exponents, close to 1/3 and 1/2, respectively. In this regime, one-dimensional dynamical scaling relations hold. We draw an analogy between this problem and Model A in a stationary, modulated external field. For deep quenches, nonpotential effects produce a complicated dislocation dynamics that can lead to either arrested or faster-than-power-law growth, depending on the model considered. In the arrested case, small isolated domains shrink down to a finite size and fail to disappear. A comparison with available experimental results of electroconvection in nematics is presented.Comment: 13 pages, 13 figures. To appear in Phys. Rev.

    Cyclic Statistics In Three Dimensions

    Full text link
    While 2-dimensional quantum systems are known to exhibit non-permutation, braid group statistics, it is widely expected that quantum statistics in 3-dimensions is solely determined by representations of the permutation group. This expectation is false for certain 3-dimensional systems, as was shown by the authors of ref. [1,2,3]. In this work we demonstrate the existence of ``cyclic'', or ZnZ_n, {\it non-permutation group} statistics for a system of n > 2 identical, unknotted rings embedded in R3R^3. We make crucial use of a theorem due to Goldsmith in conjunction with the so called Fuchs-Rabinovitch relations for the automorphisms of the free product group on n elements.Comment: 13 pages, 1 figure, LaTex, minor page reformattin

    Dynamical Encoding by Networks of Competing Neuron Groups: Winnerless Competition

    Get PDF
    Following studies of olfactory processing in insects and fish, we investigate neural networks whose dynamics in phase space is represented by orbits near the heteroclinic connections between saddle regions (fixed points or limit cycles). These networks encode input information as trajectories along the heteroclinic connections. If there are N neurons in the network, the capacity is approximately e(N-1)!, i.e., much larger than that of most traditional network structures. We show that a small winnerless competition network composed of FitzHugh-Nagumo spiking neurons efficiently transforms input information into a spatiotemporal output

    Enhancement of synchronization in a hybrid neural circuit by spike timing dependent plasticity

    Get PDF
    Synchronization of neural activity is fundamental for many functions of the brain. We demonstrate that spike-timing dependent plasticity (STDP) enhances synchronization (entrainment) in a hybrid circuit composed of a spike generator, a dynamic clamp emulating an excitatory plastic synapse, and a chemically isolated neuron from the Aplysia abdominal ganglion. Fixed-phase entrainment of the Aplysia neuron to the spike generator is possible for a much wider range of frequency ratios and is more precise and more robust with the plastic synapse than with a nonplastic synapse of comparable strength. Further analysis in a computational model of HodgkinHuxley-type neurons reveals the mechanism behind this significant enhancement in synchronization. The experimentally observed STDP plasticity curve appears to be designed to adjust synaptic strength to a value suitable for stable entrainment of the postsynaptic neuron. One functional role of STDP might therefore be to facilitate synchronization or entrainment of nonidentical neurons
    corecore