25 research outputs found

    Deleterious Effects of Simulated Spaceflight on Bone and Microvasculature in Adult Mice

    Get PDF
    Long-term spaceflight leads to extensive changes in the musculoskeletal system attributable, in part, to unloading during microgravity exposure. Additionally, irradiation at doses similar to that of a solar flare or a round-trip sojourn to Mars may cause significant depletion of stem/progenitor cell pools throughout the body as well as inflammation associated with prompt skeletal-tissue degradation. Previously, we demonstrated that irradiation leads to rapid bone loss, which can be mitigated in the short term by injection of a potent antioxidant (-lipoic acid). Furthermore, simulated weightlessness in adult mice adversely affects skeletal responses to low linear energy transfer (LET) radiation (137Cs). Here, we hypothesized that simulated weightlessness exacerbates the adverse effects of simulated space radiation (including both protons and 56Fe ions) by adversely affecting skeletal structure and functions as well as associated vasculature. Furthermore, we hypothesized that an antioxidant cocktail, which has been shown to be protective in other tissues, mitigates space radiation induced bone loss

    Phenotypic analysis of individuals with Costello syndrome due to HRAS p.G13C

    No full text
    Costello syndrome is characterized by severe failure-to-thrive, short stature, cardiac abnormalities (heart defects, tachyarrhythmia, and hypertrophic cardiomyopathy (HCM)), distinctive facial features, a predisposition to papillomata and malignant tumors, postnatal cerebellar overgrowth resulting in Chiari 1 malformation, and cognitive disabilities. De novo germline mutations in the proto-oncogene HRAS cause Costello syndrome. Most mutations affect the glycine residues in position 12 or 13, and more than 80% of patients share p.G12S. To test the hypothesis that subtle genotype-phenotype differences exist, we report the first cohort comparison between 12 Costello syndrome individuals with p.G13C and individuals with p.G12S. The individuals with p.G13C had many typical findings including polyhydramnios, failure-to-thrive, HCM, macrocephaly with posterior fossa crowding, and developmental delay. Subjectively, their facial features were less coarse. Statistically significant differences included the absence of multifocal atrial tachycardia (P-value = 0.033), ulnar deviation of the wrist (P < 0.001) and papillomata (P = 0.003), and fewer neurosurgical procedures (P = 0.024). Fewer individuals with p.G13C had short stature (height below -2 SD) without use of growth hormone (P < 0.001). The noteworthy absence of malignant tumors did not reach statistical significance. Novel ectodermal findings were noted in individuals with p.G13C, including loose anagen hair resulting in easily pluckable hair with a matted appearance, different from the tight curls typical for most Costello syndrome individuals. Unusually long eye lashes requiring trimming are a novel finding we termed dolichocilia. These distinctive ectodermal findings suggest a cell type specific effect of this particular mutation. Additional patients are needed to validate these finding
    corecore