264 research outputs found

    Demonstration of superluminal effects in an absorptionless, non-reflective system

    Full text link
    We present an experimental and theoretical study of a simple, passive system consisting of a birefringent, two-dimensional photonic crystal and a polarizer in series, and show that superluminal dispersive effects can arise even though no incident radiation is absorbed or reflected. We demonstrate that a vector formulation of the Kramers-Kronig dispersion relations facilitates an understanding of these counter-intuitive effects.Comment: 6 pages, 3 figures, accepted on Physical Review Letter

    Fast light, slow light, and phase singularities: a connection to generalized weak values

    Full text link
    We demonstrate that Aharonov-Albert-Vaidman (AAV) weak values have a direct relationship with the response function of a system, and have a much wider range of applicability in both the classical and quantum domains than previously thought. Using this idea, we have built an optical system, based on a birefringent photonic crystal, with an infinite number of weak values. In this system, the propagation speed of a polarized light pulse displays both superluminal and slow light behavior with a sharp transition between the two regimes. We show that this system's response possesses two-dimensional, vortex-antivortex phase singularities. Important consequences for optical signal processing are discussed.Comment: 9 pages, 4 figures, accepted in Physical Review Letters (2003

    Real-time Spectroscopy with Sub-GHz Resolution using Amplified Dispersive Fourier Transformation

    Full text link
    Dispersive Fourier transformation is a powerful technique in which spectral information is mapped into the time domain using chromatic dispersion. It replaces a spectrometer with an electronic digitizer, and enables real-time spectroscopy. The fundamental problem in this technique is the trade-off between the detection sensitivity and spectral resolution, a limitation set by the digitizer's bandwidth. This predicament is caused by the power loss associated with optical dispersion. We overcome this limitation using Raman amplified spectrum-to-time transformation. An extraordinary loss-less -11.76 ns/nm dispersive device is used to demonstrate single-shot gas absorption spectroscopy with 950 MHz resolution--a record in real-time spectroscopy.Comment: The following article has been accepted by Applied Physics Letter

    Microwave measurements of the photonic bandgap in a two-dimensional photonic crystal slab

    Get PDF
    We have measured the photonic bandgap in the transmission of microwaves through a two-dimensional photonic crystal slab. The structure was constructed by cementing acrylic rods in a hexagonal closed-packed array to form rectangular stacks. We find a bandgap centered at approximately 11 GHz, whose depth, width and center frequency vary with the number of layers in the slab, angle of incidence and microwave polarization.Comment: 8 pages, 3 figures, submitted to Journal of Applied Physic

    Noise figure and photon probability distribution in Coherent Anti-Stokes Raman Scattering (CARS)

    Full text link
    The noise figure and photon probability distribution are calculated for coherent anti-Stokes Raman scattering (CARS) where an anti-Stokes signal is converted to Stokes. We find that the minimum noise figure is ~ 3dB.Comment: 2 page

    Photonic crystal polarizers and polarizing beam splitters

    Full text link
    We have experimentally demonstrated polarizers and polarizing beam splitters based on microwave-scale two-dimensional photonic crystals. Using polarized microwaves within certain frequency bands, we have observed a squared-sinusoid (Malus) transmission law when using the photonic crystal as a polarizer. The photonic crystal also functions as a polarizing beamsplitter; in this configuration it can be engineered to split incident polarizations in either order, making it more versatile than conventional, Brewster-angle beamsplitters.Comment: 7 pages, 3 figures, published Journal Applied Physics 93, 9429 (2003

    Rare frustration of optical supercontinuum generation

    Get PDF
    Extremely large, rare events arise in various systems, often representing a defining character of their behavior. Another class of extreme occurrences, unexpected failures, may appear less important, but in applications demanding stringent reliability, the rare absence of an intended effect can be significant. Here, we report the observation of rare gaps in supercontinuum pulse trains, events we term rogue voids. These pulses of unusually small spectral bandwidth follow a reverse-heavy-tailed statistical form. Previous analysis has shown that rogue waves, the opposite extremes in supercontinuum generation, arise by stochastic enhancement of nonlinearity. In contrast, rogue voids appear when spectral broadening is suppressed by competition between pre-solitonic features within the modulation-instability band. This suppression effect can also be externally induced with a weak control pulse.Comment: 17 pages, 5 figure
    • …
    corecore