8,510 research outputs found
Ground states and formal duality relations in the Gaussian core model
We study dimensional trends in ground states for soft-matter systems.
Specifically, using a high-dimensional version of Parrinello-Rahman dynamics,
we investigate the behavior of the Gaussian core model in up to eight
dimensions. The results include unexpected geometric structures, with
surprising anisotropy as well as formal duality relations. These duality
relations suggest that the Gaussian core model possesses unexplored symmetries,
and they have implications for a broad range of soft-core potentials.Comment: 7 pages, 1 figure, appeared in Physical Review E (http://pre.aps.org
Local Thermal Equilibrium in Quantum Field Theory on Flat and Curved Spacetimes
The existence of local thermal equilibrium (LTE) states for quantum field
theory in the sense of Buchholz, Ojima and Roos is discussed in a
model-independent setting. It is shown that for spaces of finitely many
independent thermal observables there always exist states which are in LTE in
any compact region of Minkowski spacetime. Furthermore, LTE states in curved
spacetime are discussed and it is observed that the original definition of LTE
on curved backgrounds given by Buchholz and Schlemmer needs to be modified.
Under an assumption related to certain unboundedness properties of the
pointlike thermal observables, existence of states which are in LTE at a given
point in curved spacetime is established. The assumption is discussed for the
sets of thermal observables for the free scalar field considered by Schlemmer
and Verch.Comment: 16 pages, some minor changes and clarifications; section 4 has been
shortened as some unnecessary constructions have been remove
Several new catalysts for reduction of oxygen in fuel cells
Test results prove nickel carbide or nitride, nickel-cobalt carbide, titanium carbide or nitride, and intermetallic compounds of the transition or noble metals to be efficient electrocatalysts for oxygen reduction in alkaline electrolytes in low temperature fuel cells
Decontextualizing contextual inversion
Contextual inversion, introduced as an analytical tool by David Lewin, is a concept of wide reach and value in music theory and analysis, at the root of neo-Riemannian theory as well as serial theory, and useful for a range of analytical applications. A shortcoming of contextual inversion as it is currently understood, however, is, as implied by the name, that the transformation has to be defined anew for each application. This is potentially a virtue, requiring the analyst to invest the transformational system with meaning in order to construct it in the first place. However, there are certainly instances where new transformational systems are continually redefined for essentially the same purposes. This paper explores some of the most common theoretical bases for contextual inversion groups and considers possible definitions of inversion operators that can apply across set class types, effectively decontextualizing contextual inversions.Accepted manuscrip
Cross-correlating the Thermal Sunyaev-Zel'dovich Effect and the Distribution of Galaxy Clusters
We present the analytical formulas, derived based on the halo model, to
compute the cross-correlation between the thermal Sunyaev-Zel'dovich (SZ)
effect and the distribution of galaxy clusters. By binning the clusters
according to their redshifts and masses, this cross-correlation, the so-called
stacked SZ signal, reveals the average SZ profile around the clusters. The
stacked SZ signal is obtainable from a joint analysis of an
arcminute-resolution cosmic microwave background (CMB) experiment and an
overlapping optical survey, which allows for detection of the SZ signals for
clusters whose masses are below the individual cluster detection threshold. We
derive the error covariance matrix for measuring the stacked SZ signal, and
then forecast for its detection from ongoing and forthcoming combined
CMB-optical surveys. We find that, over a wide range of mass and redshift, the
stacked SZ signal can be detected with a significant signal to noise ratio
(total S/N \gsim 10), whose value peaks for the clusters with intermediate
masses and redshifts. Our calculation also shows that the stacking method
allows for probing the clusters' SZ profiles over a wide range of scales, even
out to projected radii as large as the virial radius, thereby providing a
promising way to study gas physics at the outskirts of galaxy clusters.Comment: 11 pages, 6 figures, 3 tables, minor revisions reflect PRD published
versio
Submillimeter satellite radiometer first semiannual engineering progress report
Development of 560 GHz fourth harmonic mixer and 140 GHz third harmonic generator for use in radiomete
Cataclysmic Variables and a New Class of Faint UV Stars in the Globular Cluster NGC 6397
We present evidence that the globular cluster NGC 6397 contains two distinct
classes of centrally-concentrated UV-bright stars. Color-magnitude diagrams
constructed from U, B, V, and I data obtained with the HST/WFPC2 reveal seven
UV-bright stars fainter than the main-sequence turnoff, three of which had
previously been identified as cataclysmic variables (CVs). Lightcurves of these
stars show the characteristic ``flicker'' of CVs, as well as longer-term
variability. A fourth star is identified as a CV candidate on the basis of its
variability and UV excess. Three additional UV-bright stars show no photometric
variability and have broad-band colors characteristic of B stars. These
non-flickering UV stars are too faint to be extended horizontal branch stars.
We suggest that they could be low-mass helium white dwarfs, formed when the
evolution of a red giant is interrupted, due either to Roche-lobe overflow onto
a binary companion, or to envelope ejection following a common-envelope phase
in a tidal-capture binary. Alternatively, they could be very-low-mass
core-He-burning stars. Both the CVs and the new class of faint UV stars are
strongly concentrated toward the cluster center, to the extent that mass
segregation from 2-body relaxation alone may be unable to explain their
distribution.Comment: 11 pages plus 3 eps figures; LaTeX using aaspp4.sty; to appear in The
Astrophysical Journal Letter
Temperature Effects on Threshold Counterion Concentration to Induce Aggregation of fd Virus
We seek to determine the mechanism of like-charge attraction by measuring the
temperature dependence of critical divalent counterion concentration
() for the aggregation of fd viruses. We find that an increase in
temperature causes to decrease, primarily due to a decrease in the
dielectric constant () of the solvent. At a constant ,
is found to increase as the temperature increases. The effects of
and on can be combined to that of one parameter:
Bjerrum length (). decreases exponentially as
increases, suggesting that entropic effect of counterions plays an important
role at the onset of bundle formation.Comment: 12 pages, 3 figure
The Effects of Massive Substructures on Image Multiplicities in Gravitati onal Lenses
Surveys for gravitational lens systems have typically found a significantly
larger fraction of lenses with four (or more) images than are predicted by
standard ellipsoidal lens models (50% versus 25-30%). We show that including
the effects of smaller satellite galaxies, with an abundance normalized by the
observations, significantly increases the expected number of systems with more
than two images and largely explains the discrepancy. The effect is dominated
by satellites with ~20% the luminosity of the primary lens, in rough agreement
with the typical luminosities of the observed satellites. We find that the lens
systems with satellites cannot, however, be dropped from estimates of the
cosmological model based on gravitational lens statistics without significantly
biasing the results.Comment: 23 pages, 7 figures, more discussion of sis vs sie and inclusion of
uncorrelated contribution
- …