7,320 research outputs found

    Hubble Space Telescope WFPC2 Imaging of SN 1979C and Its Environment

    Get PDF
    The locations of supernovae in the local stellar and gaseous environment in galaxies contain important clues to their progenitor stars. As part of a program to study the environments of supernovae using Hubble Space Telescope (HST) imaging data, we have examined the environment of the Type II-L SN 1979C in NGC 4321 (M100). We place more rigorous constraints on the mass of the SN progenitor, which may have had a mass M \approx 17--18 M_sun. Moreover, we have recovered and measured the brightness of SN 1979C, m=23.37 in F439W (~B; m_B(max) = 11.6), 17 years after explosion. .Comment: 18 pages, 8 figures, submitted to PAS

    P-Type Silicon Strip Sensors for the new CMS Tracker at HL-LHC

    Get PDF
    The upgrade of the LHC to the High-Luminosity LHC (HL-LHC) is expected to increase the LHC design luminosity by an order of magnitude. This will require silicon tracking detectors with a significantly higher radiation hardness. The CMS Tracker Collaboration has conducted an irradiation and measurement campaign to identify suitable silicon sensor materials and strip designs for the future outer tracker at the CMS experiment. Based on these results, the collaboration has chosen to use n-in-p type silicon sensors and focus further investigations on the optimization of that sensor type. This paper describes the main measurement results and conclusions that motivated this decision

    Segond's fracture: a biomechanical cadaveric study using navigation

    Get PDF
    Background Segond’s fracture is a well-recognised radiological sign of an anterior cruciate ligament (ACL) tear. While previous studies evaluated the role of the anterolateral ligament (ALL) and complex injuries on rotational stability of the knee, there are no studies on the biomechanical effect of Segond’s fracture in an ACL deficient knee. The aim of this study was to evaluate the effect of a Segond’s fracture on knee rotation stability as evaluated by a navigation system in an ACL deficient knee. Materials and methods Three different conditions were tested on seven knee specimens: intact knee, ACL deficient knee and ACL deficient knee with Segond’s fracture. Static and dynamic measurements of anterior tibial translation (ATT) and axial tibial rotation (ATR) were recorded by the navigation system (2.2 OrthoPilot ACL navigation system B. Braun Aesculap, Tuttlingen, Germany). Results Static measurements at 30 showed that the mean ATT at 30 of knee flexion was 5.1 ± 2.7 mm in the ACL intact condition, 14.3 ± 3.1 mm after ACL cut (P = 0.005), and 15.2 ± 3.6 mm after Segond’s fracture (P = 0.08). The mean ATR at 30 of knee flexion was 20.7 ± 4.8 in the ACL intact condition, 26.9 ± 4.1 in the ACL deficient knee (P[0.05) and 30.9 ± 3.8 after Segond’s fracture (P = 0.005). Dynamic measurements during the pivot-shift showed that the mean ATT was 7.2 ± 2.7 mm in the intact knee, 9.1 ± 3.3 mm in the ACL deficient knee(P = 0.04) and 9.7 ± 4.3 mm in the ACL deficient knee with Segond’s fracture (P = 0.07). The mean ATR was 9.6 ± 1.8 in the intact knee, 12.3 ± 2.3 in the ACL deficient knee (P[0.05) and 19.1 ± 3.1 in the ACL deficient knee with Segond’s lesion (P = 0.016). Conclusion An isolated lesion of the ACL only affects ATT during static and dynamic measurements, while the addition of Segond’s fracture has a significant effect on ATR in both static and dynamic execution of the pivot-shift test, as evaluated with the aid of navigation

    Integrability of irrotational silent cosmological models

    Full text link
    We revisit the issue of integrability conditions for the irrotational silent cosmological models. We formulate the problem both in 1+3 covariant and 1+3 orthonormal frame notation, and show there exists a series of constraint equations that need to be satisfied. These conditions hold identically for FLRW-linearised silent models, but not in the general exact non-linear case. Thus there is a linearisation instability, and it is highly unlikely that there is a large class of silent models. We conjecture that there are no spatially inhomogeneous solutions with Weyl curvature of Petrov type I, and indicate further issues that await clarification.Comment: Minor corrections and improvements; 1 new reference; to appear Class. Quantum Grav.; 16 pages Ioplpp

    Spatially self-similar spherically symmetric perfect-fluid models

    Get PDF
    Einstein's field equations for spatially self-similar spherically symmetric perfect-fluid models are investigated. The field equations are rewritten as a first-order system of autonomous differential equations. Dimensionless variables are chosen in such a way that the number of equations in the coupled system is reduced as far as possible and so that the reduced phase space becomes compact and regular. The system is subsequently analysed qualitatively with the theory of dynamical systems.Comment: 21 pages, 6 eps-figure

    Monotonic functions in Bianchi models: Why they exist and how to find them

    Full text link
    All rigorous and detailed dynamical results in Bianchi cosmology rest upon the existence of a hierarchical structure of conserved quantities and monotonic functions. In this paper we uncover the underlying general mechanism and derive this hierarchical structure from the scale-automorphism group for an illustrative example, vacuum and diagonal class A perfect fluid models. First, kinematically, the scale-automorphism group leads to a reduced dynamical system that consists of a hierarchy of scale-automorphism invariant sets. Second, we show that, dynamically, the scale-automorphism group results in scale-automorphism invariant monotone functions and conserved quantities that restrict the flow of the reduced dynamical system.Comment: 26 pages, replaced to match published versio

    Conformal regularization of Einstein's field equations

    Full text link
    To study asymptotic structures, we regularize Einstein's field equations by means of conformal transformations. The conformal factor is chosen so that it carries a dimensional scale that captures crucial asymptotic features. By choosing a conformal orthonormal frame we obtain a coupled system of differential equations for a set of dimensionless variables, associated with the conformal dimensionless metric, where the variables describe ratios with respect to the chosen asymptotic scale structure. As examples, we describe some explicit choices of conformal factors and coordinates appropriate for the situation of a timelike congruence approaching a singularity. One choice is shown to just slightly modify the so-called Hubble-normalized approach, and one leads to dimensionless first order symmetric hyperbolic equations. We also discuss differences and similarities with other conformal approaches in the literature, as regards, e.g., isotropic singularities.Comment: New title plus corrections and text added. To appear in CQ
    • …
    corecore