16,906 research outputs found
Non-damping oscillations at flaring loops
Context. QPPs are usually detected as spatial displacements of coronal loops
in imaging observations or as periodic shifts of line properties in
spectroscopic observations. They are often applied for remote diagnostics of
magnetic fields and plasma properties on the Sun. Aims. We combine imaging and
spectroscopic measurements of available space missions, and investigate the
properties of non-damping oscillations at flaring loops. Methods. We used the
IRIS to measure the spectrum over a narrow slit. The double-component Gaussian
fitting method was used to extract the line profile of Fe XXI 1354.08 A at "O
I" window. The quasi-periodicity of loop oscillations were identified in the
Fourier and wavelet spectra. Results. A periodicity at about 40 s is detected
in the line properties of Fe XXI, HXR emissions in GOES 1-8 A derivative, and
Fermi 26-50 keV. The Doppler velocity and line width oscillate in phase, while
a phase shift of about Pi/2 is detected between the Doppler velocity and peak
intensity. The amplitudes of Doppler velocity and line width oscillation are
about 2.2 km/s and 1.9 km/s, respectively, while peak intensity oscillate with
amplitude at about 3.6% of the background emission. Meanwhile, a quasi-period
of about 155 s is identified in the Doppler velocity and peak intensity of Fe
XXI, and AIA 131 A intensity. Conclusions. The oscillations at about 40 s are
not damped significantly during the observation, it might be linked to the
global kink modes of flaring loops. The periodicity at about 155 s is most
likely a signature of recurring downflows after chromospheric evaporation along
flaring loops. The magnetic field strengths of the flaring loops are estimated
to be about 120-170 G using the MHD seismology diagnostics, which are
consistent with the magnetic field modeling results using the flux rope
insertion method.Comment: 9 pages, 9 figures, 1 table, accepted by A&
Excitation Energy as a Basic Variable to Control Nuclear Disassembly
Thermodynamical features of Xe system is investigated as functions of
temperature and freeze-out density in the frame of lattice gas model. The
calculation shows different temperature dependence of physical observables at
different freeze-out density. In this case, the critical temperature when the
phase transition takes place depends on the freeze-out density. However, a
unique critical excitation energy reveals regardless of freeze-out density when
the excitation energy is used as a variable insteading of temperature.
Moreover, the different behavior of other physical observables with temperature
due to different vanishes when excitation energy replaces temperature.
It indicates that the excitation energy can be seen as a more basic quantity to
control nuclear disassembly.Comment: 3 pages, 2 figures, Revte
Quark deconfinement phase transition for improved quark mass density-dependent model
By using the finite temperature quantum field theory, we calculate the finite
temperature effective potential and extend the improved quark mass
density-dependent model to finite temperature. It is shown that this model can
not only describe the saturation properties of nuclear matter, but also explain
the quark deconfinement phase transition successfully. The critical temperature
is given and the effect of - meson is addressed.Comment: 18 pages, 7 figure
Negative Refraction of Excitations in the Bose-Hubbard Model
Ultracold atoms in optical lattices provide a unique opportunity to study
Bose- Hubbard physics. In this work we show that by considering a spatially
varying onsite interaction it is possible to manipulate the motion of
excitations above the Mott phase in a Bose-Hubbard system. Specifically, we
show that it is possible to "engineer" regimes where excitations will
negatively refract, facilitating the construction of a flat lens.Comment: 6 pages, 4 figure
- …