16,906 research outputs found

    Non-damping oscillations at flaring loops

    Full text link
    Context. QPPs are usually detected as spatial displacements of coronal loops in imaging observations or as periodic shifts of line properties in spectroscopic observations. They are often applied for remote diagnostics of magnetic fields and plasma properties on the Sun. Aims. We combine imaging and spectroscopic measurements of available space missions, and investigate the properties of non-damping oscillations at flaring loops. Methods. We used the IRIS to measure the spectrum over a narrow slit. The double-component Gaussian fitting method was used to extract the line profile of Fe XXI 1354.08 A at "O I" window. The quasi-periodicity of loop oscillations were identified in the Fourier and wavelet spectra. Results. A periodicity at about 40 s is detected in the line properties of Fe XXI, HXR emissions in GOES 1-8 A derivative, and Fermi 26-50 keV. The Doppler velocity and line width oscillate in phase, while a phase shift of about Pi/2 is detected between the Doppler velocity and peak intensity. The amplitudes of Doppler velocity and line width oscillation are about 2.2 km/s and 1.9 km/s, respectively, while peak intensity oscillate with amplitude at about 3.6% of the background emission. Meanwhile, a quasi-period of about 155 s is identified in the Doppler velocity and peak intensity of Fe XXI, and AIA 131 A intensity. Conclusions. The oscillations at about 40 s are not damped significantly during the observation, it might be linked to the global kink modes of flaring loops. The periodicity at about 155 s is most likely a signature of recurring downflows after chromospheric evaporation along flaring loops. The magnetic field strengths of the flaring loops are estimated to be about 120-170 G using the MHD seismology diagnostics, which are consistent with the magnetic field modeling results using the flux rope insertion method.Comment: 9 pages, 9 figures, 1 table, accepted by A&

    Excitation Energy as a Basic Variable to Control Nuclear Disassembly

    Get PDF
    Thermodynamical features of Xe system is investigated as functions of temperature and freeze-out density in the frame of lattice gas model. The calculation shows different temperature dependence of physical observables at different freeze-out density. In this case, the critical temperature when the phase transition takes place depends on the freeze-out density. However, a unique critical excitation energy reveals regardless of freeze-out density when the excitation energy is used as a variable insteading of temperature. Moreover, the different behavior of other physical observables with temperature due to different ρf\rho_f vanishes when excitation energy replaces temperature. It indicates that the excitation energy can be seen as a more basic quantity to control nuclear disassembly.Comment: 3 pages, 2 figures, Revte

    Quark deconfinement phase transition for improved quark mass density-dependent model

    Full text link
    By using the finite temperature quantum field theory, we calculate the finite temperature effective potential and extend the improved quark mass density-dependent model to finite temperature. It is shown that this model can not only describe the saturation properties of nuclear matter, but also explain the quark deconfinement phase transition successfully. The critical temperature is given and the effect of ω\omega- meson is addressed.Comment: 18 pages, 7 figure

    Negative Refraction of Excitations in the Bose-Hubbard Model

    Get PDF
    Ultracold atoms in optical lattices provide a unique opportunity to study Bose- Hubbard physics. In this work we show that by considering a spatially varying onsite interaction it is possible to manipulate the motion of excitations above the Mott phase in a Bose-Hubbard system. Specifically, we show that it is possible to "engineer" regimes where excitations will negatively refract, facilitating the construction of a flat lens.Comment: 6 pages, 4 figure
    corecore