800 research outputs found

    BINAS - Ein Entscheidungshilfesystem für die Bestandsanalyse von Bauwerken

    Get PDF
    Bauwerke sind in ihrer Betriebszeit vielen nutzungseinschränkenden Einflüssen ausgesetzt. Die dadurch erforderliche Instandhaltung dient zur Gewährleistung und zur Erhöhung der geplanten Nutzungsfähigkeit sowie Dauerhaftigkeit von Bauwerken. Sie spielt eine immer größere Rolle im Bauwesen. Die Kosten der Bauwerksinstandhaltung betragen je nach Art des Bauwerkes in Deutschland pro Jahr ca. 1-6% des Wiederbeschaffungswertes. Die Reduzierung des Instandhaltungsaufwandes durch Technik- und Management-Maßnahmen ist daher wirtschaftlich sinnvoll. Der Einsatz moderner Informations- und Kommunikationstechnologie auf dem Gebiet der Bestandsaufnahme und -analyse ist erforderlich, um einerseits die Bearbeitung von multimedialen Informationen über Ist- und Soll-Zustände von Bauwerken effektiver durchzuführen und um andererseits die Analyse von Schäden im Sinne einer Entscheidungshilfe zu unterstützen. Durch den Einsatz der WWW-Technologie kann die Bearbeitung auch verteilt im Datennetz über ferne Rechner hinweg erfolgen. Im Beitrag werden die Konzeptionierung und Implementierung des WWW-fähigen DV-Systems BINAS zur Unterstützung der Bestandsaufnahme und -analyse sowie die dafür erforderlichen Methoden und Werkzeuge vorgestellt

    BINAS - Ein Entscheidungshilfesystem für die Bestandsanalyse von Bauwerken

    Get PDF
    Bauwerke sind in ihrer Betriebszeit vielen nutzungseinschränkenden Einflüssen ausgesetzt. Die dadurch erforderliche Instandhaltung dient zur Gewährleistung und zur Erhöhung der geplanten Nutzungsfähigkeit sowie Dauerhaftigkeit von Bauwerken. Sie spielt eine immer größere Rolle im Bauwesen. Die Kosten der Bauwerksinstandhaltung betragen je nach Art des Bauwerkes in Deutschland pro Jahr ca. 1-6% des Wiederbeschaffungswertes. Die Reduzierung des Instandhaltungsaufwandes durch Technik- und Management-Maßnahmen ist daher wirtschaftlich sinnvoll. Der Einsatz moderner Informations- und Kommunikationstechnologie auf dem Gebiet der Bestandsaufnahme und -analyse ist erforderlich, um einerseits die Bearbeitung von multimedialen Informationen über Ist- und Soll-Zustände von Bauwerken effektiver durchzuführen und um andererseits die Analyse von Schäden im Sinne einer Entscheidungshilfe zu unterstützen. Durch den Einsatz der WWW-Technologie kann die Bearbeitung auch verteilt im Datennetz über ferne Rechner hinweg erfolgen. Im Beitrag werden die Konzeptionierung und Implementierung des WWW-fähigen DV-Systems BINAS zur Unterstützung der Bestandsaufnahme und -analyse sowie die dafür erforderlichen Methoden und Werkzeuge vorgestellt

    Application of anaerobic granular sludge for competitive biosorption of methylene blue and Pb(II): Fluorescence and response surface methodology

    Full text link
    © 2015 Elsevier Ltd. This study assessed the biosorption of anaerobic granular sludge (AGS) and its capacity as a biosorbent to remove Pb(II) and methylene blue (MB) from multi-components aqueous solution. It emerged that the biosorption data fitted well to the pseudo-second-order and Langmuir adsorption isotherm models in both single and binary systems. In competitive biosorption systems, Pb(II) and MB will suppress each other's biosorption capacity. Spectroscopic analysis, including Fourier transform infrared spectroscopy (FTIR) and fluorescence spectroscopy were integrated to explain this interaction. Hydroxyl and amine groups in AGS were the key functional groups for sorption. Three-dimensional excitation-emission matrix (3D-EEM) implied that two main protein-like substances were identified and quenched when Pb(II) or MB were present. Response surface methodology (RSM) confirmed that the removal efficiency of Pb(II) and MB reached its peak when the concentration ratios of Pb(II) and MB achieved a constant value of 1

    Free nitrous acid-based nitrifying sludge treatment in a two-sludge system enhances nutrient removal from low-carbon wastewater

    Full text link
    © 2017 Elsevier Ltd A new method to enhance nutrient removal from low carbon-wastewater was developed. The method consists of a two-sludge system (i.e., an anaerobic-anoxic-oxic reactor coupled to a nitrifying reactor (N-SBR)) and a nitrifying-sludge treatment unit using free nitrous acid (FNA). Initially, 65.1 ± 2.9% in total nitrogen removal and 69.6 ± 3.4% in phosphate removal were obtained without nitrite accumulation. When 1/16 of the nitrifying sludge was daily treated with FNA at 1.1 mg N/L for 24 h, ∼28.5% of nitrite was accumulated in the N-SBR, and total nitrogen and phosphate removal increased to 72.4 ± 3.2% and 76.7 ± 2.9%, respectively. About 67.8% of nitrite was accumulated at 1.9 mg N/L FNA, resulting in 82.9 ± 3.8% in total nitrogen removal and 87.9 ± 3.5% in phosphate removal. Fluorescence in-situ hybridization analysis showed that FNA treatment reduced the abundance of nitrite oxidizing bacteria (NOB), especially that of Nitrospira sp

    Micropollutants removal and health risk reduction in a water reclamation and ecological reuse system

    Full text link
    © 2018 Elsevier Ltd As reclaimed water use is increasing, its safety attracts growing attention, particularly with respect to the health risks associated with the wide range of micropollutants found in the reclaimed water. In this study, sophisticated analysis was conducted for water samples from a water reclamation and ecological reuse system where domestic wastewater was treated using an anaerobic-anoxic-oxic unit followed by a membrane bioreactor (A2O-MBR), and the reclaimed water was used for replenishing a landscape lake. A total of 58 organic micropollutants were detected in the system, consisting of 13 polycyclic aromatic hydrocarbons (PAHs), 16 phenols, 3 pesticides, and 26 pharmaceuticals and personal care products (PPCPs). After treatment by the A2O-MBR process, effective removal of pesticides and phenols was achieved, while when the reclaimed water entered the landscape lake, PPCPs were further removed. From the physicochemical properties of micropollutants, it could be inferred that phenols and dichlorphos (the only pesticide with considerable concentration in the influent) would have been mainly removed by biodegradation and/or volatilization in the biological treatment process. Additionally, it is probable that sludge adsorption also contributed to the removal of dichlorphos. For the predominant PPCP removal in the landscape lake, various actions, such as adsorption, biodegradation, photolysis, and ecologically mediated processes (via aquatic plants and animals), would have played significant roles. However, according to their logKoc, logKow and logD (pH = 8) values, it could be concluded that adsorption by suspended solids might be an important action. Although carcinogenic and non-carcinogenic risks associated with all the detected micropollutants were at negligible levels, the hazard quotients (HQs) of PPCPs accounted for 92.03%–97.23% of the HQTotal. With the significant removal of PPCPs through the ecological processes in the landscape lake, the safety of reclaimed water use could be improved. Therefore, the introduction of ecological unit into the water reclamation and reuse system could be an effective measure for health risk reduction posed by micropollutants

    Partial nitrification granular sludge reactor as a pretreatment for anaerobic ammonium oxidation (Anammox): Achievement, performance and microbial community

    Full text link
    © 2018 Elsevier Ltd Partial nitrification granular sludge was successfully cultivated in a sequencing batch reactor as a pretreatment for anaerobic ammonium oxidation (Anammox) through shortening settling time. After 250-days operation, the effluent NH4+-N and NO2−-N concentrations were average at 277.5 and 280.5 mg/L with nitrite accumulation rate of 87.8%, making it as an ideal influent for Anammox. Simultaneous free ammonia (FA) and free nitrous acid (FNA) played major inhibitory roles on the activity of nitrite oxidizing bacteria (NOB). The MLSS and SVI30 of partial nitrification reactor were 14.6 g/L and 25.0 mL/g, respectively. Polysaccharide (PS) and protein (PN) amounts in extracellular polymeric substances (EPS) from granular sludge were about 1.3 and 2.8 times higher than from seed sludge. High-throughput pyrosequencing results indicated that Nitrosomonas affiliated to the ammonia oxidizing bacteria (AOB) was the predominant group with a proportion of 24.1% in the partial nitrification system

    A Fluorescence Approach to Assess the Production of Soluble Microbial Products from Aerobic Granular Sludge under the Stress of 2,4-Dichlorophenol

    Full text link
    In this study, a fluorescence approach was used to evaluate the production of soluble microbial products (SMP) in aerobic granular sludge system under the stress of 2,4-dichlorophenol (2,4-DCP). A combined use of three-dimension excitation emission matrix fluorescence spectroscopy (3D-EEM), Parallel factor analysis (PARAFAC), synchronous fluorescence and two-dimensional correlation spectroscopy (2D-COS) were explored to respect the SMP formation in the exposure of different doses of 2,4-DCP. Data implied that the presence of 2,4-DCP had an obvious inhibition on biological nitrogen removal. According to EEM-PARAFAC, two fluorescent components were derived and represented to the presence of fulvic-like substances and humic-like substances in Component 1 and protein-like substances in Component 2. It was found from synchronous fluorescence that protein-like peak presented slightly higher intensity than that of fulvic-like peak. 2D-COS further revealed that fluorescence change took place sequentially in the following order: protein-like fraction > fulvic-like fraction. The obtained results could provide a potential application of fluorescence spectra in the released SMP assessment in the exposure of toxic compound during wastewater treatment

    Performance, microbial community and fluorescent characteristic of microbial products in a solid-phase denitrification biofilm reactor for WWTP effluent treatment

    Full text link
    © 2018 Microbial products, i.e. extracellular polymeric substance (EPS) and soluble microbial product (SMP), have a significant correlation with microbial activity of biologically based systems. In present study, the spectral characteristics of two kinds of microbial products were comprehensively evaluated in a solid-phase denitrification biofilm reactor for WWTP effluent treatment by using poly (butylene succinate) (PBS) as carbon source. After the achievement of PBS-biofilm, nitrate and total nitrogen removal efficiencies were high of 97.39 ± 1.24% and 96.38 ± 1.1%, respectively. The contents of protein and polysaccharide were changed different degrees in both LB-EPS and TB-EPS. Excitation-emission matrix (EEM) implied that protein-like substances played a significant role in the formation of PBS-biofilm. High-throughput sequencing result implied that the proportion of denitrifying bacteria, including Simplicispira, Dechloromonas, Diaphorobacter, Desulfovibrio, increased to 9.2%, 7.4%, 4.8% and 3.6% in PBS-biofilm system, respectively. According to EEM-PARAFAC, two components were identified from SMP samples, including protein-like substances for component 1 and humic-like and fulvic acid-like substances for component 2, respectively. Moreover, the fluorescent scores of two components expressed significant different trends to reaction time. Gas chromatography-mass spectrometer (GC-MS) implied that some new organic matters were produced in the effluent of SP-DBR due to biopolymer degradation and denitrification processes. The results could provide a new insight about the formation and stability of solid-phase denitrification PBS-biofilm via the point of microbial products
    corecore