6,676 research outputs found

    Secondary and compound concentrators for parabolic dish solar thermal power systems

    Get PDF
    A secondary optical element may be added to a parabolic dish solar concentrator to increase the geometric concentration ratio attainable at a given intercept factor. This secondary may be a Fresnel lens or a mirror, such as a compound elliptic concentrator or a hyperbolic trumpet. At a fixed intercept factor, higher overall geometric concentration may be obtainable with a long focal length primary and a suitable secondary matched to it. Use of a secondary to increase the geometric concentration ratio is more likely to e worthwhile if the receiver temperature is high and if errors in the primary are large. Folding the optical path with a secondary may reduce cost by locating the receiver and power conversion equipment closer to the ground and by eliminating the heavy structure needed to support this equipment at the primary focus. Promising folded-path configurations include the Ritchey-Chretien and perhaps some three element geometries. Folding the optical path may be most useful in systems that provide process heat

    Fracture through cavitation in a metallic glass

    Get PDF
    The fracture surfaces of a Zr-based bulk metallic glass exhibit exotic multi-affine isotropic scaling properties. The study of the mismatch between the two facing fracture surfaces as a function of their distance shows that fracture occurs mostly through the growth and coalescence of damage cavities. The fractal nature of these damage cavities is shown to control the roughness of the fracture surfaces

    Finding bridges in packings of colloidal spheres

    Get PDF
    We identify putative load-bearing structures (bridges) in experimental colloidal systems studied by confocal microscopy. Bridges are co-operative structures that have been used to explain stability and inhomogeneous force transmission in simulated granular packings with a range of densities. We show that bridges similar to those found in granular simulations are present in real experimental colloidal packings. We describe critically the bridge-finding procedure for real experimental data and propose a new criterion-Lowest Mean Squared Separation (LSQS)-for selecting optimum stabilisations

    Formation of long-lived, scarlike modes near avoided resonance crossings in optical microcavities

    Full text link
    We study the formation of long-lived states near avoided resonance crossings in open systems. For three different optical microcavities (rectangle, ellipse, and semi-stadium) we provide numerical evidence that these states are localized along periodic rays, resembling scarred states in closed systems. Our results shed light on the morphology of long-lived states in open mesoscopic systems.Comment: 4 pages, 5 figures (in reduced quality), to appear in Phys. Rev. Let

    Effect of strain rate on the yielding mechanism of amorphous metal foam

    Get PDF
    Stochastic amorphous Pd_(43)Ni_(10)Cu_(27)P_(20) foams were tested in quasistatic and dynamic loading. The strength/porosity relations show distinct slopes for the two loading conditions, suggesting a strain-rate-induced change in the foam yielding mechanism. The strength/porosity correlation of the dynamic test data along with microscopy assessments support that dynamic foam yielding is dominated by plasticity rather than elastic buckling, the mechanism previously identified to control quasistatic yielding. The strain-rate-induced shift in the foam yielding mechanism is attributed to the rate of loading approaching the rate of sound wave propagation across intracellular membranes, thereby suppressing elastic buckling and promoting plastic yielding

    Relation Between First Arrival Time and Permeability in Self-Affine Fractures with Areas in Contact

    Full text link
    We demonstrate that the first arrival time in dispersive processes in self-affine fractures are governed by the same length scale characterizing the fractures as that which controls their permeability. In one-dimensional channel flow this length scale is the aperture of the bottle neck, i.e., the region having the smallest aperture. In two dimensions, the concept of a bottle neck is generalized to that of a minimal path normal to the flow. The length scale is then the average aperture along this path. There is a linear relationship between the first arrival time and this length scale, even when there is strong overlap between the fracture surfaces creating areas with zero permeability. We express the first arrival time directly in terms of the permeability.Comment: EPL (2012)
    • …
    corecore