3,200 research outputs found

    Calcium intake from different food sources in Italian women without and with non-previously diagnosed osteoporosis

    Get PDF
    An adequate calcium and vitamin D intake may play a role in preventing osteoporosis, but the contribution of the different food sources of calcium with regards to the risk of osteoporosis been barely explored. This observational study evaluated the calcium intake through a food frequency questionnaire in 126 adult women with not previously diagnosed osteoporosis undergoing Dual-energy X-ray Absorptiometry (DXA) to screen for osteoporosis, and to correlate the calcium intake with parameters of bone density, measured by DXA. Total daily calcium intake and daily intake from food were similar among women found to have osteoporosis, osteopenia or normal condition. The main food source was milk and dairy products, while calcium supplementation was consumed by only 14% of subjects, irrespectively from osteoporosis conditions. DXA parameters were not significantly correlated with total daily calcium intake and calcium from food. The present study highlighted no qualitative and quantitative differences in the consumption of food groups contributing to calcium intakes in women with and without osteoporosis

    Scanning probe microscopy techniques for mechanical characterization at nanoscale

    Get PDF
    Three atomic force microscopy (AFM)-based techniques are reviewed that allow one to conduct accurate measurements of mechanical properties of either stiff or compliant materials at a nanometer scale. Atomic force acoustic microscopy, AFM-based depth sensing indentation, and torsional harmonic AFM are briefly described. Examples and results of quantitative characterization of stiff (an ultrathin SeSn film), soft polymeric (polyaniline fibers doped with detonation nanodiamond) and biological (collagen fibers) materials are reported

    Scanning Probe Microscopy for polymer film characterization in food packaging

    Get PDF
    Scanning probe microscopy (SPM) is a branch of microscopy allowing characterization of surfaces at the micro-scale by means of a physical probe (with a size of a few microns) raster scanning the sample. SPMs monitor the interaction between such probe and the surface and, depending on the specific physical principles causing the interaction, they allow generation of a quantitative map of topographic properties: geometrical, optical, electrical, magnetic, etc. This is of the greatest interest, in particular whenever functional surfaces have to be characterized in a quantitative manner. The present paper discusses the different applications of Scanning Probe Microscopy techniques for a thorough characterization of polymer surfaces, of specific interest in particular for the case of food packaging applications

    Kaon physics with the KLOE detector

    Get PDF
    In this paper we discuss the recent finalized analyses by the KLOE experiment at DAΦ\PhiNE: the CPT and Lorentz invariance test with entangled K0Kˉ0K^0 \bar{K}^0 pairs, and the precision measurement of the branching fraction of the decay K+π+ππ+(γ){ K^+} \rightarrow \pi^+\pi^-\pi^+(\gamma). We also present the status of an ongoing analysis aiming to precisely measure the K±K^{\pm} mass

    Microscopies at the nanoscale for nano-scale drug delivery systems

    Get PDF
    One of the frontier of nanoscience is undoubtedly represented by the use of nanotechnologies in the pharmaceutical research. During the last decades a big family of nanostructures that have a surface-acting action, such as NanoParticles (NPs), lipid nanocarriers and many more, have been developed to be used as Drug Delivery Systems (DDSs). However, these nanocarriers opened also new frontiers in nanometrology, requiring an accurate morphological characterization, near atomic resolution, before they are really available to clinicians to ascertain their elemental composition, to exclude the presence of contaminants introduced during the synthesis procedure and to ensure biocompatibility. Classical Transmission (TEM) and Scanning Electron Microscopy (SEM) techniques frequently have to be adapted for an accurate analysis of formulation morphology, especially in case of hydrated colloidal systems. Specific techniques such as environmental scanning microscopy and/or cryo preparation are required for their investigation. Analytical Electron Microscopy (AEM) techniques such as Electron Energy-Loss Spectroscopy (EELS) or Energy-Dispersive X-ray Spectroscopy (EDXS) are additional assets to determine the elemental composition of the systems. Here we will discuss the importance of Electron Microscopy (EM) as a reliable tool in the pharmaceutical research of the 21st century, focalizing our attention on advantages and limitations of different kind of NPs (in particular silver and carbon NPs, cubosomes) and vesicles (liposomes and niosomes)

    Smart magnetic nanovesicles for theranostic application: Preparation and characterization

    Get PDF
    Nanomedicines are submicrometer-sized carrier materials designed to improve the biodistribution of systemically administered (chemo)therapeutic agents. By delivering pharmacologically active agents more effectively and more selectively to the pathological site nanomedicines aim to improve the balance between the efficacy and the toxicity of systemic (chemo)therapeutic administrations. Nanomedicine formulations have also been used for imaging applications and, in recent years, for theranostic approaches, that is, for systems and strategies in which disease diagnosis and therapy are combined. On the one hand, “classical” drug delivery systems are being co-loaded with both drugs and contrast agents. Actually, nanomaterials with an intrinsic ability to be used for imaging purposes, such as iron-oxide–based magnetic nanoparticles (MNPs), are increasingly being loaded with drugs or alone for combining disease diagnosis and therapy. In this study, non-ionic surfactant vesicles loaded with lipophilic and hydrophilic MNPs have been prepared. Vesicles have been characterized in terms of dimensions, ζ-potential, time stability, bilayer characteristics and overall iron content. The encouraging obtained results confirm that Tween 20 and Span 20 vesicles could be promising carriers for the delivery of hydrophilic and lipophilic MNPs, respectively, thereby prompting various opportunities for the development of suitable theranostic strategies. The analyzed formulations confirm the importance of surfactant chemical-physical characteristics in entrapping the MNPs of different polarity, highlighting the high versatility of niosomal bilayer and structure; property that make them so appealing among drug delivery nanocarriers

    Scientific basis of nanotechnology, implications for the food sector and future trends

    Get PDF
    Nanotechnologies are opening up new horizons in almost all scientific and technological fields. Among these, applications of nanotechnologies are expected to bring large benefits and add value to the food and food-related industries through the current regulatory framework whole food chain, from production to processing, safety, packaging, transportation, storage and delivery. Nanotechnology consists in the realization and manipulation of nano-sized matter, the unique properties of which with respect to their bulk counterparts are illustrated and discussed. Then, the main tools and techniques routinely used in nanotechnology for the nanoscale characterization of food matrices as well as for the analytical determination of nanomaterials in food samples are reviewed. Finally, safety and risk assessment issues are discussed and an overview of applications of nanotechnology to the food sector is provided along with a description of th

    Combined Bulk and Surface Radiation Damage Effects at Very High Fluences in Silicon Detectors: Measurements and TCAD Simulations

    Full text link
    In this work we propose a new combined TCAD radiation damage modelling scheme, featuring both bulk and surface radiation damage effects, for the analysis of silicon detectors aimed at the High Luminosity LHC. In particular, a surface damage model has been developed by introducing the relevant parameters (NOX, NIT) extracted from experimental measurements carried out on p-type substrate test structures after gamma irradiations at doses in the range 10-500 Mrad(Si). An extended bulk model, by considering impact ionization and deep-level cross-sections variation, was included as well. The model has been validated through the comparison of the simulation findings with experimental measurements carried out at very high fluences (2 10^16 1 MeV equivalent n/cm^2) thus fostering the application of this TCAD approach for the design and optimization of the new generation of silicon detectors to be used in future HEP experiments.Comment: 8 pages, 14 figures. arXiv admin note: text overlap with arXiv:1611.1013

    Current nanocarrier strategies improve vitamin B12 pharmacokinetics, ameliorate patients’ lives, and reduce costs

    Get PDF
    Vitamin B12 (VitB12) is a naturally occurring compound produced by microorganisms and an essential nutrient for humans. Several papers highlight the role of VitB12 deficiency in bone and heart health, depression, memory performance, fertility, embryo development, and cancer, while VitB12 treatment is crucial for survival in inborn errors of VitB12 metabolism. VitB12 is administrated through intramuscular injection, thus impacting the patients’ lifestyle, although it is known that oral administration may meet the specific requirement even in the case of malabsorption. Furthermore, the high-dose injection of VitB12 does not ensure a constant dosage, while the oral route allows only 1.2% of the vitamin to be absorbed in human beings. Nanocarriers are promising nanotechnology that can enable therapies to be improved, reducing side effects. Today, nanocarrier strategies applied at VitB12 delivery are at the initial phase and aim to simplify administration, reduce costs, improve pharmacokinetics, and ameliorate the quality of patients’ lives. The safety of nanotechnologies is still under investigation and few treatments involving nanocarriers have been approved, so far. Here, we highlight the role of VitB12 in human metabolism and diseases, and the issues linked to its molecule properties, and discuss how nanocarriers can improve the therapy and supplementation of the vitamin and reduce possible side effects and limits
    corecore