202 research outputs found

    Electric-field switchable magnetization via the Dzyaloshinskii-Moriya interaction: FeTiO_3 versus BiFeO_3

    Full text link
    In this article we review and discuss a mechanism for coupling between electric polarization and magnetization that can ultimately lead to electric-field switchable magnetization. The basic idea is that a ferroelectric distortion in an antiferromagnetic material can "switch on" the Dzyaloshinskii-Moriya interaction which leads to a canting of the antiferromagnetic sublattice magnetizations, and thus to a net magnetization. This magnetization M is coupled to the polarization P via a trilinear free energy contribution of the form P(M x L), where L is the antiferromagnetic order parameter. In particular, we discuss why such an invariant is present in R3c FeTiO_3 but not in the isostructural multiferroic BiFeO_3. Finally, we construct symmetry groups that in general allow for this kind of ferroelectrically-induced weak ferromagnetism.Comment: 15 pages, 3 images, to appear in J. Phys: Condens. Matter Focus Issue on Multiferroic

    First-principles study of spontaneous polarization in multiferroic BiFeO3_3

    Get PDF
    The ground-state structural and electronic properties of ferroelectric BiFeO3_3 are calculated using density functional theory within the local spin-density approximation and the LSDA+U method. The crystal structure is computed to be rhombohedral with space group R3cR3c, and the electronic structure is found to be insulating and antiferromagnetic, both in excellent agreement with available experiments. A large ferroelectric polarization of 90-100 μ\muC/cm2^2 is predicted, consistent with the large atomic displacements in the ferroelectric phase and with recent experimental reports, but differing by an order of magnitude from early experiments. One possible explanation is that the latter may have suffered from large leakage currents. However both past and contemporary measurements are shown to be consistent with the modern theory of polarization, suggesting that the range of reported polarizations may instead correspond to distinct switching paths in structural space. Modern measurements on well-characterized bulk samples are required to confirm this interpretation.Comment: (9 pages, 5 figures, 5 tables

    Origin of magnetoelectric behavior in BiFeO3_3

    Full text link
    The magnetoelectric behavior of BiFeO3_3 has been explored on the basis of accurate density functional calculations. The structural, electronic, magnetic, and ferroelectric properties of BiFeO3_3 are predicted correctly without including strong correlation effect in the calculation. Moreover, the experimentally-observed elongation of cubic perovskite-like lattice along the [111] direction is correctly reproduced. At high pressure we predicted a pressure-induced structural transition and the total energy calculations at expanded lattice show two lower energy ferroelectric phases, closer in energy to the ground state phase. Band-structure calculations show that BiFeO3_3 will be an insulator in A- and G-type antiferromagnetic phases and a metal in other magnetic configurations. Chemical bonding in BiFeO3_3 has been analyzed using various tools and electron localization function analysis shows that stereochemically active lone-pair electrons at the Bi sites are responsible for displacements of the Bi atoms from the centro-symmetric to the noncentrosymmetric structure and hence the ferroelectricity. A large ferroelectric polarization (88.7 μ\muC/cm2^{2}) is predicted in accordance with recent experimental findings. The net polarization is found to mainly (>> 98%) originate from Bi atoms. Moreover the large scatter in experimentally reported polarization values is due to the large anisotropy in the spontaneous polarization.Comment: 19 pages, 12 figures, 4 table

    Quantum Hall effect in a high-mobility two-dimensional electron gas on the surface of a cylinder

    Full text link
    The quantum Hall effect is investigated in a high-mobility two-dimensional electron gas on the surface of a cylinder. The novel topology leads to a spatially varying filling factor along the current path. The resulting inhomogeneous current-density distribution gives rise to additional features in the magneto-transport, such as resistance asymmetry and modified longitudinal resistances. We experimentally demonstrate that the asymmetry relations satisfied in the integer filling factor regime are valid also in the transition regime to non-integer filling factors, thereby suggesting a more general form of these asymmetry relations. A model is developed based on the screening theory of the integer quantum Hall effect that allows the self-consistent calculation of the local electron density and thereby the local current density including the current along incompressible stripes. The model, which also includes the so-called `static skin effect' to account for the current density distribution in the compressible regions, is capable of explaining the main experimental observations. Due to the existence of an incompressible-compressible transition in the bulk, the system behaves always metal-like in contrast to the conventional Landauer-Buettiker description, in which the bulk remains completely insulating throughout the quantized Hall plateau regime

    Symmetries of a class of nonlinear fourth order partial differential equations

    Full text link
    In this paper we study symmetry reductions of a class of nonlinear fourth order partial differential equations \be u_{tt} = \left(\kappa u + \gamma u^2\right)_{xx} + u u_{xxxx} +\mu u_{xxtt}+\alpha u_x u_{xxx} + \beta u_{xx}^2, \ee where α\alpha, β\beta, γ\gamma, κ\kappa and μ\mu are constants. This equation may be thought of as a fourth order analogue of a generalization of the Camassa-Holm equation, about which there has been considerable recent interest. Further equation (1) is a ``Boussinesq-type'' equation which arises as a model of vibrations of an anharmonic mass-spring chain and admits both ``compacton'' and conventional solitons. A catalogue of symmetry reductions for equation (1) is obtained using the classical Lie method and the nonclassical method due to Bluman and Cole. In particular we obtain several reductions using the nonclassical method which are no} obtainable through the classical method

    Melting as a String-Mediated Phase Transition

    Full text link
    We present a theory of the melting of elemental solids as a dislocation-mediated phase transition. We model dislocations near melt as non-interacting closed strings on a lattice. In this framework we derive simple expressions for the melting temperature and latent heat of fusion that depend on the dislocation density at melt. We use experimental data for more than half the elements in the Periodic Table to determine the dislocation density from both relations. Melting temperatures yield a dislocation density of (0.61\pm 0.20) b^{-2}, in good agreement with the density obtained from latent heats, (0.66\pm 0.11) b^{-2}, where b is the length of the smallest perfect-dislocation Burgers vector. Melting corresponds to the situation where, on average, half of the atoms are within a dislocation core.Comment: 18 pages, LaTeX, 3 eps figures, to appear in Phys. Rev.

    Impurity breakdown and terahertz luminescence in n-GaN epilayers under external electric field

    Get PDF
    We report on the observation and experimental studies of impurity breakdown and terahertz luminescence in n-GaN epilayers under external electric field. The terahertz electroluminescence is observed in a wide range of doping levels (at noncompensated donor density from 4.5×10[sup 16] to 3.4×10[sup 18] cm[sup −3]). Spectra of terahertz luminescence and photoconductivity are studied by means of Fourier transform spectrometry. Distinctive features of the spectra can be assigned to intracenter electron transitions between excited and ground states of silicon and oxygen donors and to hot electron transitions to the donor states.Peer reviewe

    BAs and boride III-V alloys

    Full text link
    Boron arsenide, the typically-ignored member of the III-V arsenide series BAs-AlAs-GaAs-InAs is found to resemble silicon electronically: its Gamma conduction band minimum is p-like (Gamma_15), not s-like (Gamma_1c), it has an X_1c-like indirect band gap, and its bond charge is distributed almost equally on the two atoms in the unit cell, exhibiting nearly perfect covalency. The reasons for these are tracked down to the anomalously low atomic p orbital energy in the boron and to the unusually strong s-s repulsion in BAs relative to most other III-V compounds. We find unexpected valence band offsets of BAs with respect to GaAs and AlAs. The valence band maximum (VBM) of BAs is significantly higher than that of AlAs, despite the much smaller bond length of BAs, and the VBM of GaAs is only slightly higher than in BAs. These effects result from the unusually strong mixing of the cation and anion states at the VBM. For the BAs-GaAs alloys, we find (i) a relatively small (~3.5 eV) and composition-independent band gap bowing. This means that while addition of small amounts of nitrogen to GaAs lowers the gap, addition of small amounts of boron to GaAs raises the gap (ii) boron ``semi-localized'' states in the conduction band (similar to those in GaN-GaAs alloys), and (iii) bulk mixing enthalpies which are smaller than in GaN-GaAs alloys. The unique features of boride III-V alloys offer new opportunities in band gap engineering.Comment: 18 pages, 14 figures, 6 tables, 61 references. Accepted for publication in Phys. Rev. B. Scheduled to appear Oct. 15 200

    Size Quantization in Planar Graphene-Based Heterostructures: Pseudospin Splitting, Interface States, and Excitons

    Full text link
    A planar quantum-well device made of a gapless graphene nanoribbon with edges in contact with gapped graphene sheets is examined. The size-quantization spectrum of charge carriers in an asymmetric quantum well is shown to exhibit a pseudospin splitting. Interface states of a new type arise from the crossing of dispersion curves of gapless and gapped graphene materials. The exciton spectrum is calculated for a planar graphene quantum well. The effect of an external electric field on the exciton spectrum is analyzed.Comment: 15 pages, 14 figure
    • …
    corecore