13,709 research outputs found
Kodaira-Spencer formality of products of complex manifolds
We shall say that a complex manifold is emph{Kodaira-Spencer formal} if its Kodaira-Spencer differential graded Lie algebra
is formal; if this happen, then the deformation theory of
is completely determined by the graded Lie algebra and the base space of the semiuniversal deformation is a quadratic singularity..
Determine when a complex manifold is Kodaira-Spencer formal is generally difficult and
we actually know only a limited class of cases where this happen. Among such examples we have
Riemann surfaces, projective spaces, holomorphic Poisson manifolds with surjective anchor map
and every compact K"{a}hler manifold with trivial or torsion canonical
bundle.
In this short note we investigate the behavior of this property under finite products. Let be compact complex manifolds; we prove that whenever and are
K"{a}hler, then is Kodaira-Spencer formal if and only if the same
holds for and . A revisit of a classical example by Douady shows that the above result fails if the K"{a}hler assumption is droppe
International Differences in Longevity and Health and their Economic Consequences
In 1975, 50 year-old Americans could expect to live slightly longer than their European counterparts. By 2005, American life expectancy at that age has diverged substantially compared to Europe. We find that this growing longevity gap is primarily the symptom of real declines in the health of near-elderly Americans, relative to their European peers. In particular, we use a microsimulation approach to project what US longevity would look like, if US health trends approximated those in Europe. We find that differences in health can explain most of the growing gap in remaining life expectancy. In addition, we quantify the public finance consequences of this deterioration in health. The model predicts that gradually moving American cohorts to the health status enjoyed by Europeans could save up to $1.1 trillion in discounted total health expenditures from 2004 to 2050.disability, mortality, international comparisons, microsimulation
Understanding the Economic Consequences of Shifting Trends in Population Health
The public economic burden of shifting trends in population health remains uncertain. Sustained increases in obesity, diabetes, and other diseases could reduce life expectancy â with a concomitant decrease in the public-sectorâs annuity burden â but these savings may be offset by worsening functional status, which increases health care spending, reduces labor supply, and increases public assistance. Using a microsimulation approach, we quantify the competing public-finance consequences of shifting trends in population health for medical care costs, labor supply, earnings, wealth, tax revenues, and government expenditures (including Social Security and income assistance). Together, the reduction in smoking and the rise in obesity have increased net public-sector liabilities by $430bn, or approximately 4% of the current debt burden. Larger effects are observed for specific public programs: annual spending is 10% higher in the Medicaid program, and 7% higher for Medicare.disability, health care costs, social security, microsimulation
Multi-beam Energy Moments of Multibeam Particle Velocity Distributions
High resolution electron and ion velocity distributions, f(v), which consist
of N effectively disjoint beams, have been measured by NASA's Magnetospheric
Multi-Scale Mission (MMS) observatories and in reconnection simulations.
Commonly used standard velocity moments generally assume a single
mean-flow-velocity for the entire distribution, which can lead to
counterintuitive results for a multibeam f(v). An example is the (false)
standard thermal energy moment of a pair of equal and opposite cold particle
beams, which is nonzero even though each beam has zero thermal energy. By
contrast, a multibeam moment of two or more beams has no false thermal energy.
A multibeam moment is obtained by taking a standard moment of each beam and
then summing over beams. In this paper we will generalize these notions,
explore their consequences and apply them to an f(v) which is sum of
tri-Maxwellians. Both standard and multibeam energy moments have coherent and
incoherent forms. Examples of incoherent moments are the thermal energy
density, the pressure and the thermal energy flux (enthalpy flux plus heat
flux). Corresponding coherent moments are the bulk kinetic energy density, the
RAM pressure and the bulk kinetic energy flux. The false part of an incoherent
moment is defined as the difference between the standard incoherent moment and
the corresponding multibeam moment. The sum of a pair of corresponding coherent
and incoherent moments will be called the undecomposed moment. Undecomposed
moments are independent of whether the sum is standard or multibeam and
therefore have advantages when studying moments of measured f(v).Comment: 27 single-spaced pages. Three Figure
Characterizing the Hofstadter butterfly's outline with Chern numbers
In this work, we report original properties inherent to independent particles
subjected to a magnetic field by emphasizing the existence of regular
structures in the energy spectrum's outline. We show that this fractal curve,
the well-known Hofstadter butterfly's outline, is associated to a specific
sequence of Chern numbers that correspond to the quantized transverse
conductivity. Indeed the topological invariant that characterizes the
fundamental energy band depicts successive stairways as the magnetic flux
varies. Moreover each stairway is shown to be labeled by another Chern number
which measures the charge transported under displacement of the periodic
potential. We put forward the universal character of these properties by
comparing the results obtained for the square and the honeycomb geometries.Comment: Accepted for publication in J. Phys. B (Jan 2009
Probing topology by "heating": Quantized circular dichroism in ultracold atoms
We reveal an intriguing manifestation of topology, which appears in the
depletion rate of topological states of matter in response to an external
drive. This phenomenon is presented by analyzing the response of a generic 2D
Chern insulator subjected to a circular time-periodic perturbation: due to the
system's chiral nature, the depletion rate is shown to depend on the
orientation of the circular shake. Most importantly, taking the difference
between the rates obtained from two opposite orientations of the drive, and
integrating over a proper drive-frequency range, provides a direct measure of
the topological Chern number of the populated band (): this "differential
integrated rate" is directly related to the strength of the driving field
through the quantized coefficient . Contrary to the
integer quantum Hall effect, this quantized response is found to be non-linear
with respect to the strength of the driving field and it explicitly involves
inter-band transitions. We investigate the possibility of probing this
phenomenon in ultracold gases and highlight the crucial role played by edge
states in this effect. We extend our results to 3D lattices, establishing a
link between depletion rates and the non-linear photogalvanic effect predicted
for Weyl semimetals. The quantized circular dichroism revealed in this work
designates depletion-rate measurements as a universal probe for topological
order in quantum matter.Comment: 10 pages, 5 figures (including Sup. Mat.). Revised version, accepted
for publicatio
The use of orbitals and full spectra to identify misalignment
In this paper, a SpectraQuest demonstrator is used to introduce misalignment in a rotating set-up. The vibrations caused by misalignment is measured with both accelerometers on the bearings and eddy current probes on the shaft itself. A comparison is made between the classical spectral analysis, orbitals and full spectra. Orbitals are used to explain the physical interpretation of the vibration caused by misalignment. Full spectra allow to distinguish unbalance from misalignment by looking at the forward and reversed phenomena. This analysis is done for different kinds of misalignment, couplings, excitation forces and combined machinery faults
Energetics of Quantum Antidot States in Quantum Hall Regime
We report experiments on the energy structure of antidot-bound states. By
measuring resonant tunneling line widths as function of temperature, we
determine the coupling to the remote global gate voltage and find that the
effects of interelectron interaction dominate. Within a simple model, we also
determine the energy spacing of the antidot bound states, self consistent edge
electric field, and edge excitation drift velocity.Comment: 4 pages, RevTex, 5 Postscript figure
Creation of entanglement in a scalable spin quantum computer with long-range dipole-dipole interaction between qubits
Creation of entanglement is considered theoretically and numerically in an
ensemble of spin chains with dipole-dipole interaction between the spins. The
unwanted effect of the long-range dipole interaction is compensated by the
optimal choice of the parameters of radio-frequency pulses implementing the
protocol. The errors caused by (i) the influence of the environment,(ii)
non-selective excitations, (iii) influence of different spin chains on each
other, (iv) displacements of qubits from their perfect locations, and (v)
fluctuations of the external magnetic field are estimated analytically and
calculated numerically. For the perfectly entangled state the z component, M,
of the magnetization of the whole system is equal to zero. The errors lead to a
finite value of M. If the number of qubits in the system is large, M can be
detected experimentally. Using the fact that M depends differently on the
parameters of the system for each kind of error, varying these parameters would
allow one to experimentally determine the most significant source of errors and
to optimize correspondingly the quantum computer design in order to decrease
the errors and M. Using our approach one can benchmark the quantum computer,
decrease the errors, and prepare the quantum computer for implementation of
more complex quantum algorithms.Comment: 31 page
- âŠ