1,670 research outputs found
Precession during merger 1: Strong polarization changes are observationally accessible features of strong-field gravity during binary black hole merger
The short gravitational wave signal from the merger of compact binaries
encodes a surprising amount of information about the strong-field dynamics of
merger into frequencies accessible to ground-based interferometers. In this
paper we describe a previously-unknown "precession" of the peak emission
direction with time, both before and after the merger, about the total angular
momentum direction. We demonstrate the gravitational wave polarization encodes
the orientation of this direction to the line of sight. We argue the effects of
polarization can be estimated nonparametrically, directly from the
gravitational wave signal as seen along one line of sight, as a slowly-varying
feature on top of a rapidly-varying carrier. After merger, our results can be
interpreted as a coherent excitation of quasinormal modes of different angular
orders, a superposition which naturally "precesses" and modulates the
line-of-sight amplitude. Recent analytic calculations have arrived at a similar
geometric interpretation. We suspect the line-of-sight polarization content
will be a convenient observable with which to define new high-precision tests
of general relativity using gravitational waves. Additionally, as the nonlinear
merger process seeds the initial coherent perturbation, we speculate the
amplitude of this effect provides a new probe of the strong-field dynamics
during merger. To demonstrate the ubiquity of the effects we describe, we
summarize the post-merger evolution of 104 generic precessing binary mergers.
Finally, we provide estimates for the detectable impacts of precession on the
waveforms from high-mass sources. These expressions may identify new precessing
binary parameters whose waveforms are dissimilar from the existing sample.Comment: 11 figures; v2 includes response to referee suggestion
Blindly detecting orbital modulations of jets from merging supermassive black holes
In the last few years before merger, supermassive black hole binaries will
rapidly inspiral and precess in a magnetic field imposed by a surrounding
circumbinary disk. Multiple simulations suggest this relative motion will
convert some of the local energy to a Poynting-dominated outflow, with a
luminosity 10^{43} erg/s * (B/10^4 G)^2(M/10^8 Msun)^2 (v/0.4 c)^2, some of
which may emerge as synchrotron emission at frequencies near 1 GHz where
current and planned wide-field radio surveys will operate. On top of a secular
increase in power on the gravitational wave inspiral timescale, orbital motion
will produce significant, detectable modulations, both on orbital periods and
(if black hole spins are not aligned with the binary's total angular momenta)
spin-orbit precession timescales. Because the gravitational wave merger time
increases rapidly with separation, we find vast numbers of these transients are
ubiquitously predicted, unless explicitly ruled out (by low efficiency
) or obscured (by accretion geometry f_{geo}). If the fraction of
Poynting flux converted to radio emission times the fraction of lines of sight
accessible is sufficiently large (f_{geo} \epsilon > 2\times 10^{-4}
for a 1 year orbital period), at least one event is accessible to future blind
surveys at a nominal 10^4 {deg}^2 with 0.5 mJy sensitivity. Our procedure
generalizes to other flux-limited surveys designed to investigate EM signatures
associated with many modulations produced by merging SMBH binaries.Comment: Submitted to ApJ. v1 original submission; v2 minor changes in
response to refere
Reactions at Polymer Interfaces: Transitions from Chemical to Diffusion-Control and Mixed Order Kinetics
We study reactions between end-functionalized chains at a polymer-polymer
interface. For small chemical reactivities (the typical case) the number of
diblocks formed, , obeys 2nd order chemically controlled kinetics, , until interfacial saturation. For high reactivities (e.g. radicals) a
transition occurs at short times to 2nd order diffusion-controlled kinetics,
with for unentangled chains while and
regimes occur for entangled chains. Long time kinetics are 1st order and
controlled by diffusion of the more dilute species to the interface: for unentangled cases, while and regimes
arise for entangled systems. The final 1st order regime is governed by center
of gravity diffusion, .Comment: 11 pages, 3 figures, uses poliface.sty, minor changes, to appear in
Europhysics Letter
Explaining LIGO's observations via isolated binary evolution with natal kicks
We compare binary evolution models with different assumptions about
black-hole natal kicks to the first gravitational-wave observations performed
by the LIGO detectors. Our comparisons attempt to reconcile merger rate,
masses, spins, and spin-orbit misalignments of all current observations with
state-of-the-art formation scenarios of binary black holes formed in isolation.
We estimate that black holes (BHs) should receive natal kicks at birth of the
order of (50) km/s if tidal processes do (not) realign
stellar spins. Our estimate is driven by two simple factors. The natal kick
dispersion is bounded from above because large kicks disrupt too many
binaries (reducing the merger rate below the observed value). Conversely, the
natal kick distribution is bounded from below because modest kicks are needed
to produce a range of spin-orbit misalignments. A distribution of misalignments
increases our models' compatibility with LIGO's observations, if all BHs are
likely to have natal spins. Unlike related work which adopts a concrete BH
natal spin prescription, we explore a range of possible BH natal spin
distributions. Within the context of our models, for all of the choices of
used here and within the context of one simple fiducial parameterized
spin distribution, observations favor low BH natal spin.Comment: 19 pages, 14 figures, as published in PR
Kinetic Regimes and Cross-Over Times in Many-Particle Reacting Systems
We study kinetics of single species reactions ("A+A -> 0") for general local
reactivity Q and dynamical exponent z (rms displacement x_t ~ t^{1/z}.) For
small molecules z=2, whilst z=4,8 for certain polymer systems. For dimensions d
above the critical value d_c=z, kinetics are always mean field (MF). Below d_c,
the density n_t initially follows MF decay, n_0 - n_t ~ n_0^2 Q t. A 2-body
diffusion-controlled regime follows for strongly reactive systems (Q>Qstar ~
n_0^{(z-d)/d}) with n_0 - n_t ~ n_0^2 x_t^d. For Q<Qstar, MF kinetics persist,
with n_t ~ 1/Qt. In all cases n_t ~ 1/x_t^d at the longest times. Our analysis
avoids decoupling approximations by instead postulating weak physically
motivated bounds on correlation functions.Comment: 10 pages, 1 figure, uses bulk2.sty, minor changes, submitted to
Europhysics Letter
Androgen-induced rhox homeobox genes modulate the expression of AR-regulated genes
Rhox5, the founding member of the reproductive homeobox on the X chromosome (Rhox) gene cluster, encodes a homeodomain-containing transcription factor that is selectively
expressed in Sertoli cells, where it promotes the survival of male germ cells. To identify Rhox5-regulated genes, we generated 15P-1 Sertoli cell clones expressing physiological levels of Rhox5 from a stably transfected expression vector. Microarray analysis identified many
genes altered in expression in response to Rhox5, including those encoding proteins controlling cell cycle regulation, apoptosis, metabolism, and cell-cell interactions. Fifteen of these Rhox5-regulated genes were chosen for further analysis. Analysis of Rhox5-null male
mice indicated that at least 9 of these are Rhox5-regulated in the testes in vivo. Many of them have distinct postnatal expression patterns and are regulated by Rhox5 at different postnatal time points. Most of them are expressed in Sertoli cells, indicating that they are
candidates to be directly regulated by Rhox5. Transfection analysis with expression vectors encoding different mouse and human Rhox family members revealed that the regulatory
response of a subset of these Rhox5-regulated genes is both conserved and redundant. Given that Rhox5 depends on AR for expression in Sertoli cells, we examined whether some Rhox5-regulated genes are also regulated by androgen receptor (AR). We provide several lines of evidence that this is the case, leading us to propose that RHOX5 serves as a key intermediate transcription factor that directs some of the actions of AR in the testes
The Slowly Formed Guiselin Brush
We study polymer layers formed by irreversible adsorption from a polymer
melt. Our theory describes an experiment which is a ``slow'' version of that
proposed by Guiselin [Europhys. Lett., v. 17 (1992) p. 225] who considered
instantaneously irreversibly adsorbing chains and predicted a universal density
profile of the layer after swelling with solvent to produce the ``Guiselin
brush.'' Here we ask what happens when adsorption is not instantaneous. The
classic example is chemisorption. In this case the brush is formed slowly and
the final structure depends on the experiment's duration, . We find
the swollen layer consists of an inner region of thickness with approximately constant density and an outer region
extending up to height which has the same density decay as for the Guiselin case.Comment: 7 pages, submitted to Europhysics Letter
Nonspinning searches for spinning binaries in ground-based detector data: Amplitude and mismatch predictions in the constant precession cone approximation
Current searches for compact binary mergers by ground-based gravitational-wave detectors assume for simplicity the two bodies are not spinning. If the binary contains compact objects with significant spin, then this can reduce the sensitivity of these searches, particularly for black hole--neutron star binaries. In this paper we investigate the effect of neglecting precession on the sensitivity of searches for spinning binaries using non-spinning waveform models. We demonstrate that in the sensitive band of Advanced LIGO, the angle between the binary's orbital angular momentum and its total angular momentum is approximately constant. Under this \emph{constant precession cone} approximation, we show that the gravitational-wave phasing is modulated in two ways: a secular increase of the gravitational-wave phase due to precession and an oscillation around this secular increase. We show that this secular evolution occurs in precisely three ways, corresponding to physically different apparent evolutions of the binary's precession about the line of sight. We estimate the best possible fitting factor between \emph{any} non-precessing template model and a single precessing signal, in the limit of a constant precession cone. Our closed form estimate of the fitting-factor depends only the geometry of the in-band precession cone; it does not depend explicitly on binary parameters, detector response, or details of either signal model. The precessing black hole--neutron star waveforms least accurately matched by nonspinning waveforms correspond to viewing geometries where the precession cone sweeps the orbital plane repeatedly across the line of sight, in an unfavorable polarization alignment
- …