71 research outputs found

    CHRONO: a parallel multi-physics library for rigid-body, flexible-body, and fluid dynamics

    Get PDF
    Abstract. The last decade witnessed a manifest shift in the microprocessor industry towards chip designs that promote parallel computing. Until recently the privilege of a select group of large research centers, Teraflop computing is becoming a commodity owing to inexpensive GPU cards and multi to many-core x86 processors. This paradigm shift towards large scale parallel computing has been leveraged in CHRONO, a freely available C++ multi-physics simulation package. CHRONO is made up of a collection of loosely coupled components that facilitate different aspects of multi-physics modeling, simulation, and visualization. This contribution provides an overview of CHRONO::Engine, CHRONO::Flex, CHRONO::Fluid, and CHRONO::Render, which are modules that can capitalize on the processing power of hundreds of parallel processors. Problems that can be tackled in CHRONO include but are not limited to granular material dynamics, tangled large flexible structures with self contact, particulate flows, and tracked vehicle mobility. The paper presents an overview of each of these modules and illustrates through several examples the potential of this multi-physics library

    Rehabilitation versus surgical reconstruction for non-acute anterior cruciate ligament injury (ACL SNNAP): a pragmatic randomised controlled trial

    Get PDF
    Background: Anterior cruciate ligament (ACL) rupture is a common debilitating injury that can cause instability of the knee. We aimed to investigate the best management strategy between reconstructive surgery and non-surgical treatment for patients with a non-acute ACL injury and persistent symptoms of instability. Methods: We did a pragmatic, multicentre, superiority, randomised controlled trial in 29 secondary care National Health Service orthopaedic units in the UK. Patients with symptomatic knee problems (instability) consistent with an ACL injury were eligible. We excluded patients with meniscal pathology with characteristics that indicate immediate surgery. Patients were randomly assigned (1:1) by computer to either surgery (reconstruction) or rehabilitation (physiotherapy but with subsequent reconstruction permitted if instability persisted after treatment), stratified by site and baseline Knee Injury and Osteoarthritis Outcome Score—4 domain version (KOOS4). This management design represented normal practice. The primary outcome was KOOS4 at 18 months after randomisation. The principal analyses were intention-to-treat based, with KOOS4 results analysed using linear regression. This trial is registered with ISRCTN, ISRCTN10110685, and ClinicalTrials.gov, NCT02980367. Findings: Between Feb 1, 2017, and April 12, 2020, we recruited 316 patients. 156 (49%) participants were randomly assigned to the surgical reconstruction group and 160 (51%) to the rehabilitation group. Mean KOOS4 at 18 months was 73·0 (SD 18·3) in the surgical group and 64·6 (21·6) in the rehabilitation group. The adjusted mean difference was 7·9 (95% CI 2·5–13·2; p=0·0053) in favour of surgical management. 65 (41%) of 160 patients allocated to rehabilitation underwent subsequent surgery according to protocol within 18 months. 43 (28%) of 156 patients allocated to surgery did not receive their allocated treatment. We found no differences between groups in the proportion of intervention-related complications. Interpretation: Surgical reconstruction as a management strategy for patients with non-acute ACL injury with persistent symptoms of instability was clinically superior and more cost-effective in comparison with rehabilitation management. Funding: The UK National Institute for Health Research Health Technology Assessment Programme

    Zastosowanie wysokowydajnej techniki obliczeniowej (HPC) do symulacji problemów interakcji między płynem i ciałem stałym z elementami sztywnymi i elastycznymi

    No full text
    This work outlines a unified multi-threaded, multi-scale High Performance Computing (HPC) approach for the direct numerical simulation of Fluid-Solid Interaction (FSI) problems. The simulation algorithm relies on the extended Smoothed Particle Hydrodynamics (XSPH) method, which approaches the fluid flow in a La-grangian framework consistent with the Lagrangian tracking of the solid phase. A general 3D rigid body dynamics and an Absolute Nodal Coordinate Formulation (ANCF) are implemented to model rigid and flexible multibody dynamics. The two-way coupling of the fluid and solid phases is supported through use of Boundary Condition Enforcing (BCE) markers that capture the fluid-solid coupling forces by enforcing a no-slip boundary condition. The solid-solid short range interaction, which has a crucial impact on the small-scale behavior of fluid-solid mixtures, is resolved via a lubrication force model. The collective system states are integrated in time using an explicit, multi-rate scheme. To alleviate the heavy computational load, the overall algorithm leverages parallel computing on Graphics Processing Unit (GPU) cards. Performance and scaling analysis are provided for simulations scenarios involving one or multiple phases with up to tens of thousands of solid objects. The software implementation of the approach, called Chrono:Fluid, is part of the Chrono project and available as an open-source software.W pracy przedstawiono zarys jednolitego podejścia do bezpośredniej numerycznej symulacji problemów interakcji płyn – ciało stałe (FSI) z wykorzystaniem wielowątkowej wysokowydajnej techniki obliczeniowej (HPC) o wielkiej skali. Algorytm symulacji opiera się na rozszerzonej metodzie hydrodynamiki cząstek gładkich (XSPH), która opisuje przepływ płynu w formalizmie Lagrange'a zgodnym z metodą Lagrange'a śledzenia fazy stałej. W celu modelowania sztywnego i elastycznego układu wielu ciał implementowano ogólną, trójwymiarową dynamikę ciała sztywnego i zastosowano sformułowanie bezwzględnych współrzędnych węzłowych (ANCF). Dwukierunkowe sprzężenie między płynem i fazą stałą jest zamodelowane przez użycie znaczników wymuszenia warunków brzegowych (BCE) które oddają działanie sił sprzężenia między płynem a ciałem stałym wymuszając brak poślizgu w warunkach brzegowych. Problem interakcji bliskiego zakresu między płynem i ciałem stałym, która ma decydujący wpływ na zachowanie w małej skali mieszanin płynów i ciał stałych, rozwiązano przy pomocy modelu sił smarowania. Stany systemu zbiorczego są integrowane w czasie przy użyciu jawnego, wieloszybkościowego schematu. By zmniejszyć wielkie obciążenie obliczeniowe, w algorytmie ogólnym położono nacisk na obliczenia równoległe w kartach procesorów graficznych (GPU). W pracy przedstawiono analizę wydajności i skalowania dla scenariuszy symulacji obejmujących jedną lub wiele faz przy liczbie obiektów stałych sięgającej dziesiątek tysięcy. Implementacja oprogramowania przedstawionej metody, o nazwie Chrono: Fluid, jest częścią projektu Chrono i jest udostępniona do użytku nieodpłatnego
    corecore