81 research outputs found

    Uncertainty Principle for Control of Ensembles of Oscillators Driven by Common Noise

    Full text link
    We discuss control techniques for noisy self-sustained oscillators with a focus on reliability, stability of the response to noisy driving, and oscillation coherence understood in the sense of constancy of oscillation frequency. For any kind of linear feedback control--single and multiple delay feedback, linear frequency filter, etc.--the phase diffusion constant, quantifying coherence, and the Lyapunov exponent, quantifying reliability, can be efficiently controlled but their ratio remains constant. Thus, an "uncertainty principle" can be formulated: the loss of reliability occurs when coherence is enhanced and, vice versa, coherence is weakened when reliability is enhanced. Treatment of this principle for ensembles of oscillators synchronized by common noise or global coupling reveals a substantial difference between the cases of slightly non-identical oscillators and identical ones with intrinsic noise.Comment: 10 pages, 5 figure

    Memory cell based on a φ\varphi Josephson junction

    Full text link
    The φ\varphi Josephson junction has a doubly degenerate ground state with the Josephson phases ±φ\pm\varphi. We demonstrate the use of such a φ\varphi Josephson junction as a memory cell (classical bit), where writing is done by applying a magnetic field and reading by applying a bias current. In the "store" state, the junction does not require any bias or magnetic field, but just needs to stay cooled for permanent storage of the logical bit. Straightforward integration with Rapid Single Flux Quantum logic is possible.Comment: to be published in AP

    Fluxon-semifluxon interaction in an annular long Josephson 0-pi-junction

    Full text link
    We investigate theoretically the interaction between integer and half-integer Josephson vortices (fluxons and semifluxons) in an annular Josephson junction. Semifluxons usually appear at the 0-π\pi-boundary where there is a π\pi-discontinuity of the Josephson phase. We study the simplest, but the most interesting case of one π\pi-discontinuity in a loop, which can be created only artificially. We show that measuring the current-voltage characteristic after injection of an integer fluxon, one can determine the polarity of a semifluxon. Depending on the relative polarity of fluxon and semifluxon the static configuration may be stable or unstable, but in the dynamic state both configurations are stable. We also calculate the depinning current of NN fluxons pinned by an arbitrary fractional vortex.Comment: 8pages, 6 figures, submitted to PR

    0-pi Josephson tunnel junctions with ferromagnetic barrier

    Full text link
    We fabricated high quality Nb/Al_2O_3/Ni_{0.6}Cu_{0.4}/Nb superconductor-insulator-ferromagnet-superconductor Josephson tunnel junctions. Using a ferromagnetic layer with a step-like thickness, we obtain a 0-pi junction, with equal lengths and critical currents of 0 and pi parts. The ground state of our 330 microns (1.3 lambda_J) long junction corresponds to a spontaneous vortex of supercurrent pinned at the 0-pi step and carrying ~6.7% of the magnetic flux quantum Phi_0. The dependence of the critical current on the applied magnetic field shows a clear minimum in the vicinity of zero field.Comment: submitted to PR

    Dynamics of semifluxons in Nb long Josephson 0-pi junctions

    Full text link
    We propose, implement and test experimentally long Josephson 0-pi junctions fabricated using conventional Nb-AlOx-Nb technology. We show that using a pair of current injectors, one can create an arbitrary discontinuity of the Josephson phase and in particular a pi-discontinuity, just like in d-wave/s-wave or in d-wave/d-wave junctions, and study fractional Josephson vortices which spontaneously appear. Moreover, using such junctions, we can investigate the \emph{dynamics} of the fractional vortices -- a domain which is not yet available for natural 0-pi-junctions due to their inherently high damping. We observe half-integer zero-field steps which appear on the current-voltage characteristics due to hopping of semifluxons.Comment: Fractional vortices in conventional superconductors ;-

    Non-ideal artificial phase discontinuity in long Josephson 0-kappa-junctions

    Full text link
    We investigate the creation of an arbitrary κ\kappa-discontinuity of the Josephson phase in a long Nb-AlO_x-Nb Josephson junction (LJJ) using a pair of tiny current injectors, and study the formation of fractional vortices formed at this discontinuity. The current I_inj, flowing from one injector to the other, creates a phase discontinuity kappa ~ I_inj. The calibration of injectors is discussed in detail. The small but finite size of injectors leads to some deviations of the properties of such a 0-kappa-LJJ from the properties of a LJJ with an ideal kappa-discontinuity. These experimentally observed deviations in the dependence of the critical current on I_inj$ and magnetic field can be well reproduced by numerical simulation assuming a finite injector size. The physical origin of these deviations is discussed.Comment: Submitted to Phys. Rev. B (12 figures). v 2: refs updated, long eqs fixed v 3: major changes, fractional vortex dynamics exclude

    Experimental evidence of a {\phi} Josephson junction

    Full text link
    We demonstrate experimentally the existence of Josephson junctions having a doubly degenerate ground state with an average Josephson phase \psi=\pm{\phi}. The value of {\phi} can be chosen by design in the interval 0<{\phi}<\pi. The junctions used in our experiments are fabricated as 0-{\pi} Josephson junctions of moderate normalized length with asymmetric 0 and {\pi} regions. We show that (a) these {\phi} Josephson junctions have two critical currents, corresponding to the escape of the phase {\psi} from -{\phi} and +{\phi} states; (b) the phase {\psi} can be set to a particular state by tuning an external magnetic field or (c) by using a proper bias current sweep sequence. The experimental observations are in agreement with previous theoretical predictions

    Simulation of non-stationary processes in industrial centrifugal cascades of uranium enrichment

    Get PDF
    The mathematical model of non-stationary dividing processes of uranium enrichment in industrial centrifugal cascades which can be used in a computer simulator to prepare experts in dividing production and application as an expert system in the automated control system of technological circuit has been developed and realized
    corecore