376 research outputs found

    Canonical Interacting Quantum Fields on Two-Dimensional De Sitter Space

    Full text link
    We present the P(φ)2{\mathscr P}(\varphi)_2 model on de Sitter space in the canonical formulation. We discuss the role of the Noether theorem and we provide explicit expressions for the energy-stress tensor of the interacting model.Comment: minor correction

    An Algebraic Jost-Schroer Theorem for Massive Theories

    Full text link
    We consider a purely massive local relativistic quantum theory specified by a family of von Neumann algebras indexed by the space-time regions. We assume that, affiliated with the algebras associated to wedge regions, there are operators which create only single particle states from the vacuum (so-called polarization-free generators) and are well-behaved under the space-time translations. Strengthening a result of Borchers, Buchholz and Schroer, we show that then the theory is unitarily equivalent to that of a free field for the corresponding particle type. We admit particles with any spin and localization of the charge in space-like cones, thereby covering the case of string-localized covariant quantum fields.Comment: 21 pages. The second (and crucial) hypothesis of the theorem has been relaxed and clarified, thanks to the stimulus of an anonymous referee. (The polarization-free generators associated with wedge regions, which always exist, are assumed to be temperate.

    Braid group statistics implies scattering in three-dimensional local quantum physics

    Full text link
    It is shown that particles with braid group statistics (Plektons) in three-dimensional space-time cannot be free, in a quite elementary sense: They must exhibit elastic two-particle scattering into every solid angle, and at every energy. This also implies that for such particles there cannot be any operators localized in wedge regions which create only single particle states from the vacuum and which are well-behaved under the space-time translations (so-called temperate polarization-free generators). These results considerably strengthen an earlier "NoGo-theorem for 'free' relativistic Anyons". As a by-product we extend a fact which is well-known in quantum field theory to the case of topological charges (i.e., charges localized in space-like cones) in d>3, namely: If there is no elastic two-particle scattering into some arbitrarily small open solid angle element, then the 2-particle S-matrix is trivial.Comment: 25 pages, 4 figures. Comment on model-building added in the introductio

    The Spin-Statistics Theorem for Anyons and Plektons in d=2+1

    Full text link
    We prove the spin-statistics theorem for massive particles obeying braid group statistics in three-dimensional Minkowski space. We start from first principles of local relativistic quantum theory. The only assumption is a gap in the mass spectrum of the corresponding charged sector, and a restriction on the degeneracy of the corresponding mass.Comment: 21 pages, 2 figures. Citation added; Minor modifications of Appendix

    Changes in size and interpretation of parameter estimates in within-person models in the presence of time-invariant and time-varying covariates

    Get PDF
    For several decades, cross-lagged panel models (CLPM) have been the dominant statistical model in relationship research for investigating reciprocal associations between two (or more) constructs over time. However, recent methodological research has questioned the frequent usage of the CLPM because, amongst other things, the model commingles within-person associations with between-person associations, while most developmental research questions pertain to within-person processes. Furthermore, the model presumes that there are no third variables that confound the relationships between the longitudinally assessed variables. Therefore, the usage of alternative models such as the Random-Intercept Cross-Lagged Panel Model (RI-CLPM) or the Latent Curve Model with Structured Residuals (LCM-SR) has been suggested. These models separate between-person from within-person variation and they also control for time constant covariates. However, there might also be third variables that are not stable but rather change across time and that can confound the relationships between the variables studied in these models. In the present article, we explain the differences between the two types of confounders and investigate how they affect the parameter estimates of within-person models such as the RI-CLPM and the LCM-SR

    Determination of the Weak Axial Vector Coupling from a Measurement of the Beta-Asymmetry Parameter A in Neutron Beta Decay

    Full text link
    We report on a new measurement of the neutron beta-asymmetry parameter AA with the instrument \perkeo. Main advancements are the high neutron polarization of P=99.7(1)P = 99.7(1)% from a novel arrangement of super mirror polarizers and reduced background from improvements in beam line and shielding. Leading corrections were thus reduced by a factor of 4, pushing them below the level of statistical error and resulting in a significant reduction of systematic uncertainty compared to our previous experiments. From the result A0=−0.11996(58)A_0 = -0.11996(58), we derive the ratio of the axial-vector to the vector coupling constant λ=gA/gV=−1.2767(16)\lambda = g_\mathrm{A}/g_\mathrm{V} = -1.2767(16)Comment: 5 pages, 4 figure
    • …
    corecore