295 research outputs found

    The Evolution of Gene Expression QTL in Saccharomyces cerevisiae

    Get PDF
    Understanding the evolutionary forces that influence patterns of gene expression variation will provide insights into the mechanisms of evolutionary change and the molecular basis of phenotypic diversity. To date, studies of gene expression evolution have primarily been made by analyzing how gene expression levels vary within and between species. However, the fundamental unit of heritable variation in transcript abundance is the underlying regulatory allele, and as a result it is necessary to understand gene expression evolution at the level of DNA sequence variation. Here we describe the evolutionary forces shaping patterns of genetic variation for 1206 cis-regulatory QTL identified in a cross between two divergent strains of Saccharomyces cerevisiae. We demonstrate that purifying selection against mildly deleterious alleles is the dominant force governing cis-regulatory evolution in S. cerevisiae and estimate the strength of selection. We also find that essential genes and genes with larger codon bias are subject to slightly stronger cis-regulatory constraint and that positive selection has played a role in the evolution of major trans-acting QTL

    The association of Alu repeats with the generation of potential AU-rich elements (ARE) at 3' untranslated regions.

    Get PDF
    BACKGROUND: A significant portion (about 8% in the human genome) of mammalian mRNA sequences contains AU (Adenine and Uracil) rich elements or AREs at their 3' untranslated regions (UTR). These mRNA sequences are usually stable. However, an increasing number of observations have been made of unstable species, possibly depending on certain elements such as Alu repeats. ARE motifs are repeats of the tetramer AUUU and a monomer A at the end of the repeats ((AUUU)(n)A). The importance of AREs in biology is that they make certain mRNA unstable. Proto-oncogene, such as c-fos, c-myc, and c-jun in humans, are associated with AREs. Although it has been known that the increased number of ARE motifs caused the decrease of the half-life of mRNA containing ARE repeats, the exact mechanism is as of yet unknown. We analyzed the occurrences of AREs and Alu and propose a possible mechanism for how human mRNA could acquire and keep AREs at its 3' UTR originating from Alu repeats. RESULTS: Interspersed in the human genome, Alu repeats occupy 5% of the 3' UTR of mRNA sequences. Alu has poly-adenine (poly-A) regions at its end, which lead to poly-thymine (poly-T) regions at the end of its complementary Alu. It has been found that AREs are present at the poly-T regions. From the 3' UTR of the NCBI's reference mRNA sequence database, we found nearly 40% (38.5%) of ARE (Class I) were associated with Alu sequences (Table 1) within one mismatch allowance in ARE sequences. Other ARE classes had statistically significant associations as well. This is far from a random occurrence given their limited quantity. At each ARE class, random distribution was simulated 1,000 times, and it was shown that there is a special relationship between ARE patterns and the Alu repeats. CONCLUSION: AREs are mediating sequence elements affecting the stabilization or degradation of mRNA at the 3' untranslated regions. However, AREs' mechanism and origins are unknown. We report that Alu is a source of ARE. We found that half of the longest AREs were derived from the poly-T regions of the complementary Alu

    Inefficient Quality Control of Thermosensitive Proteins on the Plasma Membrane

    Get PDF
    BACKGROUND: Misfolded proteins are generally recognised by cellular quality control machinery, which typically results in their ubiquitination and degradation. For soluble cytoplasmic proteins, degradation is mediated by the proteasome. Membrane proteins that fail to fold correctly are subject to ER associated degradation (ERAD), which involves their extraction from the membrane and subsequent proteasome-dependent destruction. Proteins with abnormal transmembrane domains can also be recognised in the Golgi or endosomal system and targeted for destruction in the vacuole/lysosome. It is much less clear what happens to membrane proteins that reach their destination, such as the cell surface, and then suffer damage. METHODOLOGY/PRINCIPAL FINDINGS: We have tested the ability of yeast cells to degrade membrane proteins to which temperature-sensitive cytoplasmic alleles of the Ura3 protein or of phage lambda repressor have been fused. In soluble form, these proteins are rapidly degraded upon temperature shift, in part due to the action of the Doa10 and San1 ubiquitin ligases and the proteasome. When tethered to the ER protein Use1, they are also degraded. However, when tethered to a plasma membrane protein such as Sso1 they escape degradation, either in the vacuole or by the proteasome. CONCLUSIONS/SIGNIFICANCE: Membrane proteins with a misfolded cytoplasmic domain appear not to be efficiently recognised and degraded once they have escaped the ER, even though their defective domains are exposed to the cytoplasm and potentially to cytoplasmic quality controls. Membrane tethering may provide a way to reduce degradation of unstable proteins

    Residues Clustered in the Light-Sensing Knot of Phytochrome B are Necessary for Conformer-Specific Binding to Signaling Partner PIF3

    Get PDF
    The bHLH transcription factor, PHYTOCHROME INTERACTING FACTOR 3 (PIF3), interacts specifically with the photoactivated, Pfr, form of Arabidopsis phytochrome B (phyB). This interaction induces PIF3 phosphorylation and degradation in vivo and modulates phyB-mediated seedling deetiolation in response to red light. To identify missense mutations in the phyB N-terminal domain that disrupt this interaction, we developed a yeast reverse-hybrid screen. Fifteen individual mutations identified in this screen, or in previous genetic screens for Arabidopsis mutants showing reduced sensitivity to red light, were shown to also disrupt light-induced binding of phyB to PIF3 in in vitro co-immunoprecipitation assays. These phyB missense mutants fall into two general classes: Class I (eleven mutants) containing those defective in light signal perception, due to aberrant chromophore attachment or photoconversion, and Class II (four mutants) containing those normal in signal perception, but defective in the capacity to transduce this signal to PIF3. By generating a homology model for the three-dimensional structure of the Arabidopsis phyB chromophore-binding region, based on the crystal structure of Deinococcus radiodurans phytochrome, we predict that three of the four Class II mutated phyB residues are solvent exposed in a cleft between the presumptive PAS and GAF domains. This deduction suggests that these residues could be directly required for the physical interaction of phyB with PIF3. Because these three residues are also necessary for phyB-imposed inhibition of hypocotyl elongation in response to red light, they are functionally necessary for signal transfer from photoactivated phyB, not only to PIF3 and other related bHLH transcription factors tested here, but also to other downstream signaling components involved in regulating seedling deetiolation

    Coordinated Destruction of Cellular Messages in Translation Complexes by the Gammaherpesvirus Host Shutoff Factor and the Mammalian Exonuclease Xrn1

    Get PDF
    Several viruses encode factors that promote host mRNA degradation to silence gene expression. It is unclear, however, whether cellular mRNA turnover pathways are engaged to assist in this process. In Kaposi's sarcoma-associated herpesvirus this phenotype is enacted by the host shutoff factor SOX. Here we show that SOX-induced mRNA turnover is a two-step process, in which mRNAs are first cleaved internally by SOX itself then degraded by the cellular exonuclease Xrn1. SOX therefore bypasses the regulatory steps of deadenylation and decapping normally required for Xrn1 activation. SOX is likely recruited to translating mRNAs, as it cosediments with translation initiation complexes and depletes polysomes. Cleaved mRNA intermediates accumulate in the 40S fraction, indicating that recognition occurs at an early stage of translation. This is the first example of a viral protein commandeering cellular mRNA turnover pathways to destroy host mRNAs, and suggests that Xrn1 is poised to deplete messages undergoing translation in mammalian cells

    Eukaryotic Protein Kinases (ePKs) of the Helminth Parasite Schistosoma mansoni

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Schistosomiasis remains an important parasitic disease and a major economic problem in many countries. The <it>Schistosoma mansoni </it>genome and predicted proteome sequences were recently published providing the opportunity to identify new drug candidates. Eukaryotic protein kinases (ePKs) play a central role in mediating signal transduction through complex networks and are considered druggable targets from the medical and chemical viewpoints. Our work aimed at analyzing the <it>S. mansoni </it>predicted proteome in order to identify and classify all ePKs of this parasite through combined computational approaches. Functional annotation was performed mainly to yield insights into the parasite signaling processes relevant to its complex lifestyle and to select some ePKs as potential drug targets.</p> <p>Results</p> <p>We have identified 252 ePKs, which corresponds to 1.9% of the <it>S. mansoni </it>predicted proteome, through sequence similarity searches using HMMs (Hidden Markov Models). Amino acid sequences corresponding to the conserved catalytic domain of ePKs were aligned by MAFFT and further used in distance-based phylogenetic analysis as implemented in PHYLIP. Our analysis also included the ePK homologs from six other eukaryotes. The results show that <it>S. mansoni </it>has proteins in all ePK groups. Most of them are clearly clustered with known ePKs in other eukaryotes according to the phylogenetic analysis. None of the ePKs are exclusively found in <it>S. mansoni </it>or belong to an expanded family in this parasite. Only 16 <it>S. mansoni </it>ePKs were experimentally studied, 12 proteins are predicted to be catalytically inactive and approximately 2% of the parasite ePKs remain unclassified. Some proteins were mentioned as good target for drug development since they have a predicted essential function for the parasite.</p> <p>Conclusions</p> <p>Our approach has improved the functional annotation of 40% of <it>S. mansoni </it>ePKs through combined similarity and phylogenetic-based approaches. As we continue this work, we will highlight the biochemical and physiological adaptations of <it>S. mansoni </it>in response to diverse environments during the parasite development, vector interaction, and host infection.</p

    Regulation of Alr1 Mg Transporter Activity by Intracellular Magnesium

    Get PDF
    Mg homeostasis is critical to eukaryotic cells, but the contribution of Mg transporter activity to homeostasis is not fully understood. In yeast, Mg uptake is primarily mediated by the Alr1 transporter, which also allows low affinity uptake of other divalent cations such as Ni2+, Mn2+, Zn2+ and Co2+. Using Ni2+ uptake to assay Alr1 activity, we observed approximately nine-fold more activity under Mg-deficient conditions. The mnr2 mutation, which is thought to block release of vacuolar Mg stores, was associated with increased Alr1 activity, suggesting Alr1 was regulated by intracellular Mg supply. Consistent with a previous report of the regulation of Alr1 expression by Mg supply, Mg deficiency and the mnr2 mutation both increased the accumulation of a carboxy-terminal epitope-tagged version of the Alr1 protein (Alr1-HA). However, Mg supply had little effect on ALR1 promoter activity or mRNA levels. In addition, while Mg deficiency caused a seven-fold increase in Alr1-HA accumulation, the N-terminally tagged and untagged Alr1 proteins increased less than two-fold. These observations argue that the Mg-dependent accumulation of the C-terminal epitope-tagged protein was primarily an artifact of its modification. Plasma membrane localization of YFP-tagged Alr1 was also unaffected by Mg supply, indicating that a change in Alr1 location did not explain the increased activity we observed. We conclude that variation in Alr1 protein accumulation or location does not make a substantial contribution to its regulation by Mg supply, suggesting Alr1 activity is directly regulated via as yet unknown mechanisms

    FACT, the Bur Kinase Pathway, and the Histone Co-Repressor HirC Have Overlapping Nucleosome-Related Roles in Yeast Transcription Elongation

    Get PDF
    Gene transcription is constrained by the nucleosomal nature of chromosomal DNA. This nucleosomal barrier is modulated by FACT, a conserved histone-binding heterodimer. FACT mediates transcription-linked nucleosome disassembly and also nucleosome reassembly in the wake of the RNA polymerase II transcription complex, and in this way maintains the repression of β€˜cryptic’ promoters found within some genes. Here we focus on a novel mutant version of the yeast FACT subunit Spt16 that supplies essential Spt16 activities but impairs transcription-linked nucleosome reassembly in dominant fashion. This Spt16 mutant protein also has genetic effects that are recessive, which we used to show that certain Spt16 activities collaborate with histone acetylation and the activities of a Bur-kinase/Spt4–Spt5/Paf1C pathway that facilitate transcription elongation. These collaborating activities were opposed by the actions of Rpd3S, a histone deacetylase that restores a repressive chromatin environment in a transcription-linked manner. Spt16 activity paralleling that of HirC, a co-repressor of histone gene expression, was also found to be opposed by Rpd3S. Our findings suggest that Spt16, the Bur/Spt4–Spt5/Paf1C pathway, and normal histone abundance and/or stoichiometry, in mutually cooperative fashion, facilitate nucleosome disassembly during transcription elongation. The recessive nature of these effects of the mutant Spt16 protein on transcription-linked nucleosome disassembly, contrasted to its dominant negative effect on transcription-linked nucleosome reassembly, indicate that mutant FACT harbouring the mutant Spt16 protein competes poorly with normal FACT at the stage of transcription-linked nucleosome disassembly, but effectively with normal FACT for transcription-linked nucleosome reassembly. This functional difference is consistent with the idea that FACT association with the transcription elongation complex depends on nucleosome disassembly, and that the same FACT molecule that associates with an elongation complex through nucleosome disassembly is retained for reassembly of the same nucleosome

    How do trypanosomes change gene expression in response to the environment?

    Full text link
    • …
    corecore