5 research outputs found

    Kinetic equation for nonlinear resonant wave-particle interaction

    Get PDF
    We investigate nonlinear resonant wave-particle interactions including effects of particle (phase) trapping, detrapping, and scattering by high-amplitude coherent waves. After deriving the relation between probability of trapping and velocity of particle drift induced by nonlinear scattering (phase bunching), we substitute this relation and other characteristic equations of wave-particle interaction into a kinetic equation for the particle distribution function. The final equation has the form of a Fokker-Planck equation with peculiar advection and collision terms. This equation fully describes the evolution of particle momentum distribution due to particle diffusion, nonlinear drift, and fast transport in phase-space via trapping. Solutions of the obtained kinetic equation are compared with results of test particle simulations

    Probabilistic approach to nonlinear wave-particle resonant interaction

    Get PDF
    In this paper we provide a theoretical model describing the evolution of the charged particle distribution function in a system with nonlinear wave particle interactions. Considering a system with strong electrostatic waves propagating in an inhomogeneous magnetic field, we demonstrate that individual particle motion can be characterized by the probability of trapping into the resonance with the wave and by the efficiency of scattering at resonance. These characteristics, being derived for a particular plasma system, can be used to construct a kinetic equation (or generalized Fokker-Planck equation) modelling the long-term evolution of the particle distribution. In this equation, effects of charged particle trapping and transport in phase space are simulated with a nonlocal operator. We demonstrate that solutions of the derived kinetic equations agree with results of test particle tracing. The applicability of the proposed approach for the description of space and laboratory plasma systems is also discussed

    Long-term evolution of electron distribution function due to nonlinear resonant interaction with whistler mode waves

    Get PDF
    Accurately modelling and forecasting of the dynamics of the Earth’s radiation belts with the available computer resources represents an important challenge that still requires significant advances in the theoretical plasma physics field of wave–particle resonant interaction. Energetic electron acceleration or scattering into the Earth’s atmosphere are essentially controlled by their resonances with electromagnetic whistler mode waves. The quasi-linear diffusion equation describes well this resonant interaction for low intensity waves. During the last decade, however, spacecraft observations in the radiation belts have revealed a large number of whistler mode waves with sufficiently high intensity to interact with electrons in the nonlinear regime. A kinetic equation including such nonlinear wave–particle interactions and describing the long-term evolution of the electron distribution is the focus of the present paper. Using the Hamiltonian theory of resonant phenomena, we describe individual electron resonance with an intense coherent whistler mode wave. The derived characteristics of such a resonance are incorporated into a generalized kinetic equation which includes non-local transport in energy space. This transport is produced by resonant electron trapping and nonlinear acceleration. We describe the methods allowing the construction of nonlinear resonant terms in the kinetic equation and discuss possible applications of this equation

    Probability of relativistic electron trapping by parallel and oblique whistler-mode waves in Earth's radiation belts

    Get PDF
    We investigate electron trapping by high-amplitude whistler-mode waves propagating at small as well as large angles relative to geomagnetic field lines. The inhomogeneity of the background magnetic field can result in an effective acceleration of trapped particles. Here, we derive useful analytical expressions for the probability of electron trapping by both parallel and oblique waves, paving the way for a full analytical description of trapping effects on the particle distribution. Numerical integrations of particle trajectories allow to demonstrate the accuracy of the derived analytical estimates. For realistic wave amplitudes, the levels of probabilities of trapping are generally comparable for oblique and parallel waves, but they turn out to be most efficient over complementary energy ranges. Trapping acceleration of 100 keV electrons

    Electron nonlinear resonant interaction with short and intense parallel chorus wave-packets

    Get PDF
    One of the major drivers of radiation belt dynamics, electron resonant interaction with whistler‐mode chorus waves, is traditionally described using the quasi‐linear diffusion approximation. Such a description satisfactorily explains many observed phenomena, but its applicability can be justified only for sufficiently low intensity, long duration waves. Recent spacecraft observations of a large number of very intense lower band chorus waves (with magnetic field amplitudes sometimes reaching ∼1% of the background) therefore challenge this traditional description, and call for an alternative approach when addressing the global, long‐term effects of the nonlinear interaction of these waves with radiation belt electrons. In this paper, we first use observations from the Van Allen Probes and Time History of Events and Macroscale Interactions during Substorms (THEMIS) spacecraft to show that the majority of intense parallel chorus waves consists of relatively short wave‐packets. Then, we construct a kinetic equation describing the nonlinear resonant interaction of radiation belt electrons with such short and intense wave‐packets. We demonstrate that this peculiar type of nonlinear interaction produces similar effects as quasi‐linear diffusion, i.e., a flattening of the electron velocity distribution function within a certain energy/pitch‐angle range. The main difference is the much faster evolution of the electron distribution when nonlinear interaction prevails
    corecore