
Kinetic equation for nonlinear resonant wave-particle interaction
A. V. Artemyev, A. I. Neishtadt, A. A. Vasiliev, and D. Mourenas

Citation: Physics of Plasmas 23, 090701 (2016); doi: 10.1063/1.4962526
View online: http://dx.doi.org/10.1063/1.4962526
View Table of Contents: http://aip.scitation.org/toc/php/23/9
Published by the American Institute of Physics

Articles you may be interested in
Probability of relativistic electron trapping by parallel and oblique whistler-mode waves in Earth's radiation belts
Physics of Plasmas 22, 112903 (2015); 10.1063/1.4935842

Non-diffusive resonant acceleration of electrons in the radiation belts
Physics of Plasmas 19, 122901 (2012); 10.1063/1.4769726

 Transverse eV ion heating by random electric field fluctuations in the plasmasphere
Physics of Plasmas 24, 022903 (2017); 10.1063/1.4976713

Nonlinear electron acceleration by oblique whistler waves: Landau resonance vs. cyclotron resonance
Physics of Plasmas 20, 122901 (2013); 10.1063/1.4836595

 Modelling nonlinear electrostatic oscillations in plasmas
Physics of Plasmas 23, 122103 (2016); 10.1063/1.4968520

 Electron holes in phase space: What they are and why they matter
Physics of Plasmas 24, 055601 (2017); 10.1063/1.4976854

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Loughborough University Institutional Repository

https://core.ac.uk/display/288371087?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/675098871/x01/AIP-PT/Pfeiffer_PoPArticleDL_090617/17.04.07_3_Prod_1640x440px_EN_USA.JPG/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Artemyev%2C+A+V
http://aip.scitation.org/author/Neishtadt%2C+A+I
http://aip.scitation.org/author/Vasiliev%2C+A+A
http://aip.scitation.org/author/Mourenas%2C+D
/loi/php
http://dx.doi.org/10.1063/1.4962526
http://aip.scitation.org/toc/php/23/9
http://aip.scitation.org/publisher/
http://aip.scitation.org/doi/abs/10.1063/1.4935842
http://aip.scitation.org/doi/abs/10.1063/1.4769726
http://aip.scitation.org/doi/abs/10.1063/1.4976713
http://aip.scitation.org/doi/abs/10.1063/1.4836595
http://aip.scitation.org/doi/abs/10.1063/1.4968520
http://aip.scitation.org/doi/abs/10.1063/1.4976854


Kinetic equation for nonlinear resonant wave-particle interaction

A. V. Artemyev,1,2,a) A. I. Neishtadt,2,3 A. A. Vasiliev,2 and D. Mourenas4

1Institute of Geophysics and Planetary Physics, UCLA, Los Angeles, California 90095-1567, USA
2Space Research Institute, RAS, Moscow, Russia
3Department of Mathematical Sciences, Loughborough University, Loughborough LE11 3TU,
United Kingdom
4CEA, DAM, DIF, Arpajon, France

(Received 29 June 2016; accepted 29 August 2016; published online 8 September 2016)

We investigate the nonlinear resonant wave-particle interactions including the effects of particle

(phase) trapping, detrapping, and scattering by high-amplitude coherent waves. After deriving the

relationship between probability of trapping and velocity of particle drift induced by nonlinear scat-

tering (phase bunching), we substitute this relation and other characteristic equations of wave-

particle interaction into a kinetic equation for the particle distribution function. The final equation

has the form of a Fokker-Planck equation with peculiar advection and collision terms. This equa-

tion fully describes the evolution of particle momentum distribution due to particle diffusion, non-

linear drift, and fast transport in phase-space via trapping. Solutions of the obtained kinetic

equation are compared with results of test particle simulations. Published by AIP Publishing.
[http://dx.doi.org/10.1063/1.4962526]

Resonant interactions of a particle ensemble with a broad

spectrum of low amplitude electromagnetic waves are conven-

tionally described by the diffusion (Fokker-Planck) equation

of the quasi-linear theory.9,22 The timescale of the resonant

wave-particle interactions is then defined by the inverse of the

finite wave-packet dispersion rate.12,17 In inhomogeneous

plasmas (or background magnetic field), an additional stochas-

tization of the resonant charged particle motion introduces a

new timescale of the wave-particle interactions19,20 and justi-

fies the applicability of the quasi-linear diffusion equation

even for a very narrow wave spectrum.1 One of the most suc-

cessful examples of application of the quasi-linear theory is

the very accurate description of relativistic electron accelera-

tion and scattering in the Earth’s radiation belts. However,

when the wave amplitudes become sufficiently high, the appli-

cability of the quasi-linear approach breaks down17 and the

nonlinear effects such as particle trapping and nonlinear scat-

tering (phase bunching)11,15 start to play an important role.

These effects are well studied and described analytically for

test particle trajectories (e.g., Refs. 2, 3, 6, and 18), but the

problem of their proper inclusion into a Fokker-Planck equa-

tion for a full description of the long-term evolution of a parti-

cle ensemble has, so far, eluded solution (e.g., see discussion

in Ref. 16).

If the wave field energy is much smaller than the particle

kinetic energy, the wave-particle interactions are described

by the Hamiltonian H ¼ H0 þ eH1 cos / where the unper-

turbed Hamiltonian H0 describes particle motion in the back-

ground magnetic field, and the wave-induced perturbation

eH1 cos / depends on the wave phase / (where the weakness

of perturbations is taken into account via the small parameter

e� 1). Unperturbed motion consists of several types of

oscillations (gyrorotation around the background magnetic

field, bounce oscillations between magnetic mirror points,

etc., e.g., Ref. 20). If one of these oscillations turns out to be

faster than the wave phase variation (which rate _/ is about

the wave frequency x), the perturbation should be expanded

in harmonics of this oscillation H1 cos / ¼
P

n H
ðnÞ
1 cos /ðnÞ,

where each harmonic can be considered separately (later we

omit index n).20 The phase / varies much faster than other

variables, and we assume for simplicity that its rate _/ � 1=e
(in the general case, _/ is a large parameter independent of

1=e, but for most important cases, the temporal variation of

the perturbation @ðH � H0Þ=@t � e _/ should be about O(1)

to significantly affect particle motion). It is convenient to

introduce / as a new variable and to consider the pair of con-

jugate variables ð/; IÞ, where I is the particle normalized

momentum.2,3,18 Changing the timescale t! te, we obtain a

system where phase changes at a rate �1, whereas other var-

iables (momenta and coordinates) evolve over the timescale

s ¼ te. To parameterize the dependence of H on these slow

variables in terms of dependence on s, we consider a simple

but rather general 1 1
2

degrees of freedom system with

Hamiltonian H ¼ H0ðs; IÞ þ eH1ðs; IÞ cos /. The resonant

condition _/ ¼ @H0=@I ¼ 0 has a solution I ¼ IRðsÞ.
Expansion around IR gives the following Hamiltonian:

H ¼ Kþ 1

2
g I � IRð Þ2 þ eB cos /; (1)

where KðsÞ ¼ H0ðs; IRðsÞÞ; gðsÞ ¼ ð@2H0=@I2ÞI¼IR
; BðsÞ

¼ H1ðs; IRðsÞÞ. We introduce the new variable P/ ¼ ðI � IRÞ
and rewrite the new Hamiltonian F of perturbations H � K
in a form

F ¼ 1

2
gP2

/ þ eA/þ eB cos /; (2)

where eA ¼ @IR=@t and ð/;P/Þ are conjugate variables. The

general Hamiltonian (2) describes resonant systems with

fast phase (see a general derivation of this Hamiltonian ina)Electronic mail: aartemyev@igpp.ucla.edu
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Ref. 14). The corresponding Hamiltonian equations _P/ ¼
�eAþ eB sin /; _/ ¼ gP/ describe the nonlinear pendulum

with a torque that appears in the majority of systems describ-

ing wave-particle resonant interactions (see, e.g., reviews

2–4, and 18 and references therein). The analysis of the

Hamiltonian (2) will provide the needed characteristics of

particle scattering and acceleration by the waves. Below we

consider only sufficiently intense coherent waves such that

B > jAj.
For aðsÞ ¼ B=jAj > 1 (for definiteness, we consider

B> 0 and g> 0), the phase portrait of Hamiltonian (2) con-

tains a region filled with closed trajectories. The existence of

such a region guarantees the nonlinear character of wave-

particle interaction (see more details in Refs. 2, 3, and 18).

Particles moving along closed trajectories oscillate around

the resonance _/ ¼ 0 and are called trapped particles.

Particles moving along open trajectories are transient and are

scattered by the wave. If the area S of the trapped region

grows, some transient particles can get trapped into reso-

nance with the wave. S is given by equation (see Eq. (2))

SðsÞ ¼
Þ

P/d/ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8eB=g

p
sðaÞ where

sðaÞ ¼
ð/þ

/�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a�1ð/þ � /Þ þ cos /þ � cos /

q
d/; (3)

and /� is a root of equation a sin / ¼ �1, whereas /þ is a

root of equation ð/� � /Þ þ aðcos /� � cos /Þ ¼ 0. The

relative number of particles which can be trapped by waves

during one passage through resonance is called the probabil-

ity of trapping P and is defined as a ratio of dS/dt and phase

flux through the resonance3,14

P ¼ dS

dt

.�����
ð2p

0

_P/d/

����� ¼
1

2pjAj
dS

ds
; (4)

where _P/ is defined by Hamiltonian equations for (2), and

P¼ 0 if dS=ds < 0. Both S and P are small variables �
ffiffi
e
p

.

Once being trapped, particles move in resonance with the

wave until the area SðsÞ returns to its value at the moment of

trapping strap (see scheme in Fig. 1). During the time interval

of trapped motion, particle momentum I varies as IR, and

particles escape from resonance with larger (or smaller) I (or

larger (smaller) energy HðI; sÞ). This effect corresponds to

particle acceleration via trapping.2,3,16,18 Since the duration

of trapping acceleration can be rather long and variations of

I can be large (both being independent of e), this process can-

not be described as a local diffusion.

Transient particles passing through the resonance with-

out being trapped are scattered with a change of momentum

I given by equation DI ¼
Ð

_Idt ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2eB=g

p
hð/�; aÞ, where

h /�; að Þ ¼
ð/�

�1

sign Að Þ
ffiffiffi
a
p

sin /d/ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
/� � /þ a cos /� � cos /ð Þ

p ; (5)

and /� is defined by the particle energy F� ¼ ejAjð/�
þ a cos /�Þ taken at P/ ¼ 0. The integral (5) depends on s
and h ¼ ð/� þ a cos /�Þ=2p. The function hðhÞ is periodic

(see, e.g., Ref. 3), whereas the mean value hhih ¼
�signðAÞsðaÞ=p for a> 1 and hhih ¼ 0 for a< 1 (see Ref.

14). For wave-particle interactions in a magnetic field,

averaging over initial conditions (gyrophases) of resonant

particles is equivalent to an averaging over h. This allows

us to derive two expressions describing the evolution of the

h-averaged particle distribution f(I) under the influence of

nonlinear and quasi-linear scattering:8 the velocity of drift

V ¼ hDIi=s0 ¼ �signðAÞS=ð2ps0Þ and the diffusion coeffi-

cient D ¼ VarðDIÞ=s0 ¼ 2eðB=gÞVarðhÞ, where s0 is the

time interval between two successive passages through the

resonance and Var is the variance. This expression for the

diffusion coefficient D coincides with the formula derived

previously for a narrow wave spectrum in the frame of the

quasi-linear theory.1 Coefficients PðsÞ; VðsÞ; DðsÞ can be

rewritten as PðIÞ, V(I), D(I) because I¼ IR at resonance.

We have derived expressions for PðIÞ, V(I), and D(I).
These general characteristics of nonlinear wave-particle res-

onant interaction have been derived analytically and tested

numerically many times for different plasma systems.1–3,16,18

However, to our best knowledge, no equation providing the

relationship between P and V(I) has been yet available.

Hereafter, we shall derive this relationship and use it to con-

struct (for the first time) a generalized Fokker-Planck equa-

tion which will include all effects described by PðIÞ, V(I),
and D(I). Using the definition eA ¼ @IR=@t and Eq. (4), we

obtain

dV

dI
¼ � sign Að Þ

2ps0

dS

dt

dI

dt

� ��1

I¼IR

¼ � 1

2pejAjs0

dS

dt
¼ �P

s0

: (6)

Using the above-defined D, V, and P=s0 and considering

a trapping/escape event as a rapid change of particle I to I0

(where I0 is defined by equations I0 ¼ IRðsescÞ; SðstrapÞ
¼ SðsescÞ, see Fig. 1), we can now write a Fokker-Planck

equation describing the full evolution of the distribution

FIG. 1. A schematic view of area SðsÞ and resonant momentum IRðsÞ profiles.

A particle becomes trapped by the wave at s ¼ strap, when the area S grows

and I¼ IR. During trapped motion, momentum varies as IRðsÞ. When the area

S returns back to the value SðstrapÞ, the trapped particle escapes from reso-

nance, at s ¼ sesc. After escape, the particle has a momentum IRðsescÞ ¼ I0.
For simplicity, we consider here systems with a single maximum of S at I¼ I0.
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function f(I) under the influence of both scattering and trap-

ping (the diffusion term being written in its divergent form)

@f

@t
¼ @

@I
D
@f

@I

� �
� @ Vfð Þ

@I

þ
ð1

0

f ~Ið ÞQ~I!I � f Ið ÞQI!~I

� �
d~I; (7)

where particle transport I0 ! I via trapping is defined by

probability QI0!I and particle departure from I by probability

QI!I0 . Let us consider SðsÞ rewritten as SðIRÞ with monoto-

nous IRðsÞ and assume for simplicity that S has only one max-

imum at IR ¼ I0 (see Fig. 1). At resonance I¼ IR, and thus

S ¼ SðIÞ. For I > I0 we have S growing and a finite probabil-

ity of trapping QI!I0 ¼ ðPðIÞ=s0ÞdðI � I0Þ. For I < I0, the

area S decreases and particles escape from resonance. The

corresponding function is QI0!I ¼ ðPðI0Þ=s0ÞdðI � wðI0ÞÞ,
where function wðI0Þ gives the value I0 > I0 that particles

should have when getting trapped to escape later from reso-

nance with I < I0 (w is defined by the S(I) profile, see Fig. 1),

and PðI0Þ is the probability of particle trapping at I0 > I0. The

integral operator in Eq. (7) can then be re-formulated as

�f ðIÞPðIÞ=s0 for I > I0 and f ðI0ÞPðI0Þjdw=dI0j�1=s0 ¼
ðdV=dIÞf ðI0Þ for I < I0, where we used

dw I0ð Þ
dI0

¼ dI

dI0
¼ dV I0ð Þ=dI0

dV Ið Þ=dI
¼ � P I0ð Þ=s0

dV Ið Þ=dI
;

and VðI0Þ ¼ VðIÞ because SðstrapÞ ¼ SðsescÞ. Using these

expressions and Eq. (6), we can rewrite Eq. (7) in its final

form

@f

@t
¼ @

@I
D
@f

@I

� �
� V

@f

@I
� dV

dI
f � f I0ð Þ
� 	

H Ið Þ; (8)

where I ¼ wðI0Þ; HðIÞ ¼ 1ð0Þ for I > I0ðI < I0Þ. Equation

(8) is a Fokker-Planck equation generalized to include

effects of nonlinear scattering (drift V) and fast transport in

phase space (nonlocal term �f ðIÞ � f ðI0Þ). The timescale of

diffusion is e�1 (since D � e), whereas the timescales of drift

and trapping-induced transport are much shorter �e�1=2. For

systems with small wave amplitudes (a< 1), V and dV/dI
vanish and Eq. (8) reduces to the usual quasi-linear diffusion

equation.

To check Eq. (8), we compare its solution with results of

numerical trajectory integration for the initial system (1). We

consider a simple example of Hamiltonian (1) with K¼ 0,

g¼ 1, IR ¼ sin s, and BðsÞ a periodic function of s (period is

s0 ¼ 2p=e) with a single maximum over s 2 ½s0=4; 3s0=4�
and equals to zero for s 2 ½0; s0=4�; ½3s0=4; s0�. The resonant

momentum IR varies from �1 to 1 and particles with all I 2
[�1, 1] pass through the resonance over one period s0.

Figure 2 shows two examples of test trajectories calculated

over a long time interval. Particles can be trapped at a posi-

tive I and transported to negative I (in this system I0¼ 0),

whereas nonlinear drift V transports particles back from neg-

ative I to positive I. Both processes of trapping and drift

coexist with diffusive scattering. Particle behavior shown in

Fig. 2 is a typical behavior in plasma systems with nonlinear

wave-particle interactions (see, e.g., trajectories in Refs. 3

and 16).

For our test system, we calculate P from Eq. (4), s0V ¼
�

ffiffiffiffiffiffiffiffi
8eB
p

sðaÞ=2p from Eq. (3), diffusion coefficient D, and

function w(I), and express them as functions of I¼ IR. To

check the analytical formulas for P, V, and D, we integrate

numerically 107 trajectories with different initial I and calcu-

late changes DI over one period s0 (i.e., for a single resonant

interaction). The ratio of the number of particles which were

trapped into resonance over the total number of particles

gives the numerical probability of trapping P. For untrapped

particles, we calculate the average value of DI and its vari-

ance Var(DI). These two functions, depending on the initial

I, are then used to calculate the numerical V and D. Figure 3

demonstrates that our analytical expressions provide quite

accurate descriptions of the trapping probability, drift veloc-

ity, and diffusion coefficient.

FIG. 2. Two test trajectories (shown by black and red lines) for Hamiltonian (1).
FIG. 3. Comparisons of analytical expressions for P0¼Ps0=

ffiffi
e
p
;V0¼Vs0 =

ffiffi
e
p

,

and D0¼Ds0=e (black curves) with numerical results (red circles).
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The above analytical coefficients V and D have been

substituted into Eq. (8), which was solved numerically for a

particular initial distribution f0(I). This solution is compared

in Figure 4 with the results of direct numerical integration

of 107 test particle trajectories for Hamiltonian (1). All

three expected effects of trapping and scattering are recov-

ered: (1) fast transport of trapped particles from the initial

distribution peak at positive I toward negative I; (2) particle

nonlinear drift toward positive I; and (3) a slower diffusive

flattening.

Based on the successful comparisons displayed in Fig.

4, we can conclude that Eq. (8) accurately describes all the

effects of nonlinear as well as quasi-linear wave-particle

interactions. This new equation can therefore be considered

as a generalization of the classical Fokker-Planck equation

derived in the restricted frame of quasi-linear theory.

Moreover, its practical, analytical form allows a much faster

resolution than with particle simulations, while retaining all

the complex and entangled variations. Using the same pro-

posed approach, a more general 2D form of Eq. (8) could be

derived, allowing swift calculations of the evolution of parti-

cle energy and pitch-angle distributions in many plasma sys-

tems where wave intensity and coherency are sufficient to

drive nonlinear interactions, as in the Earth’s radiation

belts2,3 and magnetized laboratory plasmas,7,21 inertial con-

finement fusion,4,10 or Penning-Malmberg traps.5,13

The work of A.V.A., A.A.V., and A.I.N was supported

by the Russian Scientific Fund, Project No. 14-12-00824.
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