1,656 research outputs found

    A Tight-Binding Investigation of the NaxCoO2 Fermi Surface

    Full text link
    We perform an orthogonal basis tight binding fit to an LAPW calculation of paramagnetic Nax_xCoO2_2 for several dopings. The optimal position of the apical oxygen at each doping is resolved, revealing a non-trivial dependence of the band structure and Fermi surface on oxygen height. We find that the small eg′_{g'} hole pockets are preserved throughout all investigated dopings and discuss some possible reasons for the lack of experimental evidence for these Fermi sheets

    Precise Tight-binding Description of the Band Structure of MgB2

    Full text link
    We present a careful recasting of first-principles band structure calculations for MgB2 in a non-orthogonal sp-tight-binding (TB) basis. Our TB results almost exactly reproduce our full potential linearized augmented plane wave results for the energy bands, the densities of states and the total energies. Our procedure generates transferable Slater-Koster parameters which should be useful for other studies of this important material.Comment: REVTEX, 2 Encapsulated PostScript Figure

    Fabrication of salt–hydrogel marbles and hollow-shell microcapsules by an aerosol gelation technique

    Get PDF
    We designed a new method for preparation of liquid marbles by using hydrophilic particles. Salt–hydrogel marbles were prepared by atomising droplets of hydrogel solution in a cold air column followed by rolling of the collected hydrogel microbeads in a bed of micrometre sized salt particles. Evaporation of the water from the resulting salt marbles with a hydrogel core yielded hollow-shell salt microcapsules. The method is not limited to hydrophilic particles and could potentially be also applied to particles of other materials, such as graphite, carbon black, silica and others. The structure and morphology of the salt–hydrogel marbles were analysed by SEM and their particle size distributions were measured. We also tested the dissolution times of the dried salt marbles and compared them with those of table salt samples under the same conditions. The high accessible surface area of the shell of salt microcrystals allows a faster initial release of salt from the hollow-shell salt capsules upon their dissolution in water than from the same amount of table salt. The results suggest that such hollow-shell particles could find applications as a table salt substitute in dry food products and salt seasoning formulations with reduced salt content without the loss of saltiness

    Tight-binding study of structure and vibrations of amorphous silicon

    Full text link
    We present a tight-binding calculation that, for the first time, accurately describes the structural, vibrational and elastic properties of amorphous silicon. We compute the interatomic force constants and find an unphysical feature of the Stillinger-Weber empirical potential that correlates with a much noted error in the radial distribution function associated with that potential. We also find that the intrinsic first peak of the radial distribution function is asymmetric, contrary to usual assumptions made in the analysis of diffraction data. We use our results for the normal mode frequencies and polarization vectors to obtain the zero-point broadening effect on the radial distribution function, enabling us to directly compare theory and a high resolution x-ray diffraction experiment

    Dynamical properties of Au from tight-binding molecular-dynamics simulations

    Full text link
    We studied the dynamical properties of Au using our previously developed tight-binding method. Phonon-dispersion and density-of-states curves at T=0 K were determined by computing the dynamical-matrix using a supercell approach. In addition, we performed molecular-dynamics simulations at various temperatures to obtain the temperature dependence of the lattice constant and of the atomic mean-square-displacement, as well as the phonon density-of-states and phonon-dispersion curves at finite temperature. We further tested the transferability of the model to different atomic environments by simulating liquid gold. Whenever possible we compared these results to experimental values.Comment: 7 pages, 9 encapsulated Postscript figures, submitted to Physical Review
    • …
    corecore