1,656 research outputs found
A Tight-Binding Investigation of the NaxCoO2 Fermi Surface
We perform an orthogonal basis tight binding fit to an LAPW calculation of
paramagnetic NaCoO for several dopings. The optimal position of the
apical oxygen at each doping is resolved, revealing a non-trivial dependence of
the band structure and Fermi surface on oxygen height. We find that the small
e hole pockets are preserved throughout all investigated dopings and
discuss some possible reasons for the lack of experimental evidence for these
Fermi sheets
Precise Tight-binding Description of the Band Structure of MgB2
We present a careful recasting of first-principles band structure
calculations for MgB2 in a non-orthogonal sp-tight-binding (TB) basis. Our TB
results almost exactly reproduce our full potential linearized augmented plane
wave results for the energy bands, the densities of states and the total
energies. Our procedure generates transferable Slater-Koster parameters which
should be useful for other studies of this important material.Comment: REVTEX, 2 Encapsulated PostScript Figure
Fabrication of salt–hydrogel marbles and hollow-shell microcapsules by an aerosol gelation technique
We designed a new method for preparation of liquid marbles by using hydrophilic particles. Salt–hydrogel marbles were prepared by atomising droplets of hydrogel solution in a cold air column followed by rolling of the collected hydrogel microbeads in a bed of micrometre sized salt particles. Evaporation of the water from the resulting salt marbles with a hydrogel core yielded hollow-shell salt microcapsules. The method is not limited to hydrophilic particles and could potentially be also applied to particles of other materials, such as graphite, carbon black, silica and others. The structure and morphology of the salt–hydrogel marbles were analysed by SEM and their particle size distributions were measured. We also tested the dissolution times of the dried salt marbles and compared them with those of table salt samples under the same conditions. The high accessible surface area of the shell of salt microcrystals allows a faster initial release of salt from the hollow-shell salt capsules upon their dissolution in water than from the same amount of table salt. The results suggest that such hollow-shell particles could find applications as a table salt substitute in dry food products and salt seasoning formulations with reduced salt content without the loss of saltiness
Tight-binding study of structure and vibrations of amorphous silicon
We present a tight-binding calculation that, for the first time, accurately
describes the structural, vibrational and elastic properties of amorphous
silicon. We compute the interatomic force constants and find an unphysical
feature of the Stillinger-Weber empirical potential that correlates with a much
noted error in the radial distribution function associated with that potential.
We also find that the intrinsic first peak of the radial distribution function
is asymmetric, contrary to usual assumptions made in the analysis of
diffraction data. We use our results for the normal mode frequencies and
polarization vectors to obtain the zero-point broadening effect on the radial
distribution function, enabling us to directly compare theory and a high
resolution x-ray diffraction experiment
Dynamical properties of Au from tight-binding molecular-dynamics simulations
We studied the dynamical properties of Au using our previously developed
tight-binding method. Phonon-dispersion and density-of-states curves at T=0 K
were determined by computing the dynamical-matrix using a supercell approach.
In addition, we performed molecular-dynamics simulations at various
temperatures to obtain the temperature dependence of the lattice constant and
of the atomic mean-square-displacement, as well as the phonon density-of-states
and phonon-dispersion curves at finite temperature. We further tested the
transferability of the model to different atomic environments by simulating
liquid gold. Whenever possible we compared these results to experimental
values.Comment: 7 pages, 9 encapsulated Postscript figures, submitted to Physical
Review
- …