267 research outputs found

    Isotope Geochemistry for Comparative Planetology of Exoplanets

    Get PDF
    Isotope geochemistry has played a critical role in understanding processes at work in and the history of solar system bodies. Application of these techniques to exoplanets would be revolutionary and would allow comparative planetology with the formation and evolution of exoplanet systems. The roadmap for comparative planetology of the origins and workings of exoplanets involves isotopic geochemistry efforts in three areas: (1) technology development to expand observations of the isotopic composition of solar system bodies and expand observations to isotopic composition of exoplanet atmospheres; (2) theoretical modeling of how isotopes fractionate and the role they play in evolution of exoplanetary systems, atmospheres, surfaces and interiors; and (3) laboratory studies to constrain isotopic fractionation due to processes at work throughout the solar system

    Zooming in on local level statistics by supersymmetric extension of free probability

    Full text link
    We consider unitary ensembles of Hermitian NxN matrices H with a confining potential NV where V is analytic and uniformly convex. From work by Zinn-Justin, Collins, and Guionnet and Maida it is known that the large-N limit of the characteristic function for a finite-rank Fourier variable K is determined by the Voiculescu R-transform, a key object in free probability theory. Going beyond these results, we argue that the same holds true when the finite-rank operator K has the form that is required by the Wegner-Efetov supersymmetry method of integration over commuting and anti-commuting variables. This insight leads to a potent new technique for the study of local statistics, e.g., level correlations. We illustrate the new technique by demonstrating universality in a random matrix model of stochastic scattering.Comment: 38 pages, 3 figures, published version, minor changes in Section

    A Vision for Ice Giant Exploration

    Get PDF
    From Voyager to a Vision for 2050: NASA and ESA have just completed a study of candidate missionsto Uranus and Neptune, the so-called ice giant planets. It is a Pre-Decadal Survey Study, meant to inform the next Planetary Science Decadal Survey about opportunities for missions launching in the 2020's and early 2030's. There have been no space flight missions to the ice giants since the Voyager 2 flybys of Uranus in 1986 and Neptune in 1989. This paper presents some conclusions of that study (hereafter referred to as The Study), and how the results feed into a vision for where planetary science can be in 2050. Reaching that vision will require investments in technology andground-based science in the 2020's, flight during the 2030's along with continued technological development of both ground- and space-based capabilities, and data analysis and additional flights in the 2040's. We first discuss why exploring the ice giants is important. We then summarize the science objectives identified by The Study, and our vision of the science goals for 2050. We then review some of the technologies needed to make this vision a reality

    Understanding and Visualizing Droplet Distributions in Simulations of Shallow Clouds

    Full text link
    Thorough analysis of local droplet-level interactions is crucial to better understand the microphysical processes in clouds and their effect on the global climate. High-accuracy simulations of relevant droplet size distributions from Large Eddy Simulations (LES) of bin microphysics challenge current analysis techniques due to their high dimensionality involving three spatial dimensions, time, and a continuous range of droplet sizes. Utilizing the compact latent representations from Variational Autoencoders (VAEs), we produce novel and intuitive visualizations for the organization of droplet sizes and their evolution over time beyond what is possible with clustering techniques. This greatly improves interpretation and allows us to examine aerosol-cloud interactions by contrasting simulations with different aerosol concentrations. We find that the evolution of the droplet spectrum is similar across aerosol levels but occurs at different paces. This similarity suggests that precipitation initiation processes are alike despite variations in onset times.Comment: 4 pages, 3 figures, accepted at NeurIPS 2023 (Machine Learning and the Physical Sciences Workshop
    corecore