1,032 research outputs found
A ray mode parabolic equation for shallow water acoustics propagation problems
Ray mode parabolic equations which are suitable for shallow water acoustics
propagation problems are derived by the multiple-scale method.Comment: 7 pp., 0 fi
LHCb trigger streams optimization
The LHCb experiment stores around collision events per year. A
typical physics analysis deals with a final sample of up to events.
Event preselection algorithms (lines) are used for data reduction. Since the
data are stored in a format that requires sequential access, the lines are
grouped into several output file streams, in order to increase the efficiency
of user analysis jobs that read these data. The scheme efficiency heavily
depends on the stream composition. By putting similar lines together and
balancing the stream sizes it is possible to reduce the overhead. We present a
method for finding an optimal stream composition. The method is applied to a
part of the LHCb data (Turbo stream) on the stage where it is prepared for user
physics analysis. This results in an expected improvement of 15% in the speed
of user analysis jobs, and will be applied on data to be recorded in 2017.Comment: Submitted to CHEP-2016 proceeding
Germanium Detector with Internal Amplification for Investigation of Rare Processes
Device of new type is suggested - germanium detector with internal
amplification. Such detector having effective threshold about 10 eV opens up
fresh opportunity for investigation of dark matter, measurement of neutrino
magnetic moment, of neutrino coherent scattering at nuclei and for study of
solar neutrino problem. Construction of germanium detector with internal
amplification and perspectives of its use are described.Comment: 13 pages, latex, 3 figures, report at NANP-99, International
Conference on Non-Accelerator Physics, Dubna, Russia, June 29- July 3, 1999.
To be published in the Proceeding
Design and operation of a cryogenic charge-integrating preamplifier for the MuSun experiment
The central detector in the MuSun experiment is a pad-plane time projection
ionization chamber that operates without gas amplification in deuterium at 31
K; it is used to measure the rate of the muon capture process . A new charge-sensitive preamplifier, operated at
140 K, has been developed for this detector. It achieved a resolution of 4.5
keV(D) or 120 RMS with zero detector capacitance at 1.1 s
integration time in laboratory tests. In the experimental environment, the
electronic resolution is 10 keV(D) or 250 RMS at a 0.5 s
integration time. The excellent energy resolution of this amplifier has enabled
discrimination between signals from muon-catalyzed fusion and muon capture on
chemical impurities, which will precisely determine systematic corrections due
to these processes. It is also expected to improve the muon tracking and
determination of the stopping location.Comment: 18 pages + title page, 13 figures, to be submitted to JINST; minor
corrections, added one reference, updated author lis
First Order Static Excitation Potential: Scheme for Excitation Energies and Transition Moments
We present an approximation scheme for the calculation of the principal
excitation energies and transition moments of finite many-body systems. The
scheme is derived from a first order approximation to the self energy of a
recently proposed extended particle-hole Green's function. A hermitian
eigenvalue problem is encountered of the same size as the well-known Random
Phase Approximation (RPA). We find that it yields a size consistent description
of the excitation properties and removes an inconsistent treatment of the
ground state correlation by the RPA. By presenting a hermitian eigenvalue
problem the new scheme avoids the instabilities of the RPA and should be well
suited for large scale numerical calculations. These and additional properties
of the new approximation scheme are illuminated by a very simple exactly
solvable model.Comment: 15 pages revtex, 1 eps figure included, corrections in Eq. (A1) and
Sec. II
Kinetic Inductance and Penetration Depth of Thin Superconducting Films Measured by THz Pulse Spectroscopy
We measure the transmission of THz pulses through thin films of YBCO at
temperatures between 10K and 300K. The pulses possess a useable bandwidth
extending from 0.1 -- 1.5 THz (3.3 cm^-1 -- 50 cm^-1). Below T_c we observe
pulse reshaping caused by the kinetic inductance of the superconducting charge
carriers. From transmission data, we extract values of the London penetration
depth as a function of temperature, and find that it agrees well with a
functional form (\lambda(0)/\lambda(T))^2 = 1 - (T/T_c)^{\alpha}, where
\lambda(0) = 148 nm, and \alpha = 2. *****Figures available upon request*****Comment: 7 Pages, LaTe
- …