131,494 research outputs found

    Haldane fractional statistics in the fractional quantum Hall effect

    Get PDF
    We have tested Haldane's ``fractional-Pauli-principle'' description of excitations around the ν=1/3\nu = 1/3 state in the FQHE, using exact results for small systems of electrons. We find that Haldane's prediction β=±1/m\beta = \pm 1/m for quasiholes and quasiparticles, respectively, describes our results well with the modification βqp=2−1/3\beta_{qp} = 2-1/3 rather than −1/3-1/3. We also find that this approach enables us to better understand the {\it energetics\/} of the ``daughter'' states; in particular, we find good evidence, in terms of the effective interaction between quasiparticles, that the states ν=4/11\nu = 4/11 and 4/13 should not be stable.Comment: 9 pages, 3 Postscript figures, RevTex 3.0. (UCF-CM-93-005

    Testing equality of variances in the analysis of repeated measurements

    Get PDF
    The problem of comparing the precisions of two instruments using repeated measurements can be cast as an extension of the Pitman-Morgan problem of testing equality of variances of a bivariate normal distribution. Hawkins (1981) decomposes the hypothesis of equal variances in this model into two subhypotheses for which simple tests exist. For the overall hypothesis he proposes to combine the tests of the subhypotheses using Fisher's method and empirically compares the component tests and their combination with the likelihood ratio test. In this paper an attempt is made to resolve some discrepancies and puzzling conclusions in Hawkins's study and to propose simple modifications.\ud \ud The new tests are compared to the tests discussed by Hawkins and to each other both in terms of the finite sample power (estimated by Monte Carlo simulation) and theoretically in terms of asymptotic relative efficiencies

    Quantum Dots in Strong Magnetic Fields: Stability Criteria for the Maximum Density Droplet

    Full text link
    In this article we discuss the ground state of a parabolically confined quantum dots in the limit of very strong magnetic fields where the electron system is completely spin-polarized and all electrons are in the lowest Landau level. Without electron-electron interactions the ground state is a single Slater determinant corresponding to a droplet centered on the minimum of the confinement potential and occupying the minimum area allowed by the Pauli exclusion principle. Electron-electron interactions favor droplets of larger area. We derive exact criteria for the stability of the maximum density droplet against edge excitations and against the introduction of holes in the interior of the droplet. The possibility of obtaining exact results in the strong magnetic field is related to important simplifications associated with broken time-reversal symmetry in a strong magnetic field.Comment: 17 pages, 5 figures (not included), RevTeX 3.0. (UCF-CM-93-002

    Quantum Algorithm to Solve Satisfiability Problems

    Full text link
    A new quantum algorithm is proposed to solve Satisfiability(SAT) problems by taking advantage of non-unitary transformation in ground state quantum computer. The energy gap scale of the ground state quantum computer is analyzed for 3-bit Exact Cover problems. The time cost of this algorithm on general SAT problems is discussed.Comment: 5 pages, 3 figure

    Development of shape memory metal as the actuator of a fail safe mechanism

    Get PDF
    A small, compact, lightweight device was developed using shape memory alloy (SMA) in wire form to actuate a pin-puller that decouples the flanges of two shafts. When the SMA is heated it contracts producing a useful force and stroke. As it cools, it can be reset (elongated in this case) by applying a relatively small force. Resistive heating is accomplished by running a current through the SMA wire for a controlled length of time. The electronics to drive the device are not elaborate or complicated, consisting of a timed current source. The total available contraction is 3 percent of the length of the wire. This device, the engineering properties of the SMA, and the tests performed to verify the design concept are described

    Film Edge Nonlocal Spin Valves

    Full text link
    Spintronics is a new paradigm for integrated digital electronics. Recently established as a niche for nonvolatile magnetic random access memory (MRAM), it offers new functionality while demonstrating low power and high speed performance. However, to reach high density spintronic technology must make a transition to the nanometer scale. Prototype devices are presently made using a planar geometry and have an area determined by the lithographic feature size, currently about 100 nm. Here we present a new nonplanar geometry in which one lateral dimension is given by a film thickness, the order of 10 nm. With this new approach, cell sizes can shrink by an order of magnitude. The geometry is demonstrated with a nonlocal spin valve, where we study devices with an injector/detector separation much less than the spin diffusion length.Comment: 10 pages, 3 figure

    Ceramic automotive Stirling engine study

    Get PDF
    A conceptual design study for a Ceramic Automotive Stirling Engine (CASE) is performed. Year 1990 structural ceramic technology is assumed. Structural and performance analyses of the conceptual design are performed as well as a manufacturing and cost analysis. The general conclusions from this study are that such an engine would be 10-26% more efficient over its performance map than the current metal Automotive Stirling Reference Engine (ASRE). Cost of such a ceramic engine is likely to be somewhat higher than that of the ASRE but engine cost is very sensitive to the ultimate cost of the high purity, ceramic powder raw materials required to fabricate high performance parts. When the design study is projected to the year 2000 technology, substantinal net efficiency improvements, on the order of 25 to 46% over the ASRE, are computed
    • …
    corecore