369 research outputs found
Combination of a magnetic Feshbach resonance and an optical bound-to-bound transition
We use laser light near resonant with an optical bound-to-bound transition to
shift the magnetic field at which a Feshbach resonance occurs. We operate in a
regime of large detuning and large laser intensity. This reduces the
light-induced atom-loss rate by one order of magnitude compared to our previous
experiments [D.M. Bauer et al. Nature Phys. 5, 339 (2009)]. The experiments are
performed in an optical lattice and include high-resolution spectroscopy of
excited molecular states, reported here. In addition, we give a detailed
account of a theoretical model that describes our experimental data
A Mott-like State of Molecules
We prepare a quantum state where each site of an optical lattice is occupied
by exactly one molecule. This is the same quantum state as in a Mott insulator
of molecules in the limit of negligible tunneling. Unlike previous Mott
insulators, our system consists of molecules which can collide inelastically.
In the absence of the optical lattice these collisions would lead to fast loss
of the molecules from the sample. To prepare the state, we start from a Mott
insulator of atomic 87Rb with a central region, where each lattice site is
occupied by exactly two atoms. We then associate molecules using a Feshbach
resonance. Remaining atoms can be removed using blast light. Our method does
not rely on the molecule-molecule interaction properties and is therefore
applicable to many systems.Comment: Proceedings of the 20th International Conference on Atomic Physics
(ICAP 2006), edited by C. Roos, H. Haffner, and R. Blatt, AIP Conference
Proceedings, Melville, 2006, Vol. 869, pp. 278-28
Internal-state thermometry by depletion spectroscopy in a cold guided beam of formaldehyde
We present measurements of the internal state distribution of
electrostatically guided formaldehyde. Upon excitation with continuous tunable
ultraviolet laser light the molecules dissociate, leading to a decrease in the
molecular flux. The population of individual guided states is measured by
addressing transitions originating from them. The measured populations of
selected states show good agreement with theoretical calculations for different
temperatures of the molecule source. The purity of the guided beam as deduced
from the entropy of the guided sample using a source temperature of 150K
corresponds to that of a thermal ensemble with a temperature of about 30 K
Atom-molecule Rabi oscillations in a Mott insulator
We observe large-amplitude Rabi oscillations between an atomic and a
molecular state near a Feshbach resonance. The experiment uses 87Rb in an
optical lattice and a Feshbach resonance near 414 G. The frequency and
amplitude of the oscillations depend on magnetic field in a way that is well
described by a two-level model. The observed density dependence of the
oscillation frequency agrees with the theoretical expectation. We confirmed
that the state produced after a half-cycle contains exactly one molecule at
each lattice site. In addition, we show that for energies in a gap of the
lattice band structure, the molecules cannot dissociate
A quantum network node with crossed optical fibre cavities
Quantum networks provide unique possibilities for resolving open questions on
entanglement and promise innovative applications ranging from secure
communication to scalable computation. While two quantum nodes coupled by a
single channel are adequate for basic quantum communication tasks between two
parties, fully functional large-scale quantum networks require a web-like
architecture with multiply connected nodes. Efficient interfaces between
network nodes and channels can be implemented with optical cavities. Using two
optical fibre cavities coupled to one atom, we here realise a quantum network
node that connects to two quantum channels. It functions as a passive, heralded
and high-fidelity quantum memory that requires neither amplitude- and
phase-critical control fields nor error-prone feedback loops. Our node is
robust, fits naturally into larger fibre-based networks, can be scaled to more
cavities, and thus provides clear perspectives for a quantum internet including
qubit controlled quantum switches, routers, and repeaters.Comment: 12 pages, 8 figures (including Supplementary Information
Trapping of Neutral Rubidium with a Macroscopic Three-Phase Electric Trap
We trap neutral ground-state rubidium atoms in a macroscopic trap based on
purely electric fields. For this, three electrostatic field configurations are
alternated in a periodic manner. The rubidium is precooled in a magneto-optical
trap, transferred into a magnetic trap and then translated into the electric
trap. The electric trap consists of six rod-shaped electrodes in cubic
arrangement, giving ample optical access. Up to 10^5 atoms have been trapped
with an initial temperature of around 20 microkelvin in the three-phase
electric trap. The observations are in good agreement with detailed numerical
simulations.Comment: 4 pages, 4 figure
Cold guided beams of water isotopologs
Electrostatic velocity filtering and guiding is an established technique to
produce high fluxes of cold polar molecules. In this paper we clarify different
aspects of this technique by comparing experiments to detailed calculations. In
the experiment, we produce cold guided beams of the three water isotopologs
H2O, D2O and HDO. Their different rotational constants and orientations of
electric dipole moments lead to remarkably different Stark shift properties,
despite the molecules being very similar in a chemical sense. Therefore, the
signals of the guided water isotopologs differ on an absolute scale and also
exhibit characteristic electrode voltage dependencies. We find excellent
agreement between the relative guided fractions and voltage dependencies of the
investigated isotopologs and predictions made by our theoretical model of
electrostatic velocity filtering.Comment: 14 pages, 13 figures; small changes to the text, updated reference
Dynamical multistability in high-finesse micromechanical optical cavities
We analyze the nonlinear dynamics of a high-finesse optical cavity in which
one mirror is mounted on a flexible mechanical element. We find that this
system is governed by an array of dynamical attractors, which arise from
phase-locking between the mechanical oscillations of the mirror and the ringing
of the light intensity in the cavity. We describe an analytical approximation
to map out the diagram of attractors in parameter space, derive the slow
amplitude dynamics of the system, including thermally activated hopping between
different attractors, and suggest a scheme for exploiting the dynamical
multistability in the measurement of small displacements.Comment: 5 pages, 4 figure
- …