72 research outputs found

    Modular microfluidic system as a model of cystic fibrosis airways

    Get PDF
    A modular microfluidic airways model system that can simulate the changes in oxygen tension in different compartments of the cystic fibrosis (CF) airways was designed, developed, and tested. The fully reconfigurable system composed of modules with different functionalities: multichannel peristaltic pumps, bubble traps, gas exchange chip, and cell culture chambers. We have successfully applied this system for studying the antibiotic therapy of Pseudomonas aeruginosa, the bacteria mainly responsible for morbidity and mortality in cystic fibrosis, in different oxygen environments. Furthermore, we have mimicked the bacterial reinoculation of the aerobic compartments (lower respiratory tract) from the anaerobic compartments (cystic fibrosis sinuses) following an antibiotic treatment. This effect is hypothesised as the one on the main reasons for recurrent lung infections in cystic fibrosis patients

    A compact multifunctional microfluidic platform for exploring cellular dynamics in real-time using electrochemical detection

    Get PDF
    Downscaling of microfluidic cell culture and detection devices for electrochemical monitoring has mostly focused on miniaturization of the microfluidic chips which are often designed for specific applications and therefore lack functional flexibility. We present a compact microfluidic cell culture and electrochemical analysis platform with in-built fluid handling and detection, enabling complete cell based assays comprising on-line electrode cleaning, sterilization, surface functionalization, cell seeding, cultivation and electrochemical real-time monitoring of cellular dynamics. To demonstrate the versatility and multifunctionality of the platform, we explored amperometric monitoring of intracellular redox activity in yeast (Saccharomyces cerevisiae) and detection of exocytotically released dopamine from rat pheochromocytoma cells (PC12). Electrochemical impedance spectroscopy was used in both applications for monitoring cell sedimentation and adhesion as well as proliferation in the case of PC12 cells. The influence of flow rate on the signal amplitude in the detection of redox metabolism as well as the effect of mechanical stimulation on dopamine release were demonstrated using the programmable fluid handling capability. The here presented platform is aimed at applications utilizing cell based assays, ranging from e.g. monitoring of drug effects in pharmacological studies, characterization of neural stem cell differentiation, and screening of genetically modified microorganisms to environmental monitoring

    Culturing Aerobic and Anaerobic Bacteria and Mammalian Cells with a Microfluidic Differential Oxygenator

    Get PDF
    In this manuscript, we report on the culture of anaerobic and aerobic species within a disposable multilayer polydimethylsiloxane (PDMS) microfluidic device with an integrated differential oxygenator. A gas-filled microchannel network functioning as an oxygen−nitrogen mixer generates differential oxygen concentration. By controlling the relative flow rate of the oxygen and nitrogen input gases, the dissolved oxygen (DO) concentration in proximal microchannels filled with culture media are precisely regulated by molecular diffusion. Sensors consisting of an oxygen-sensitive dye embedded in the fluid channels permit dynamic fluorescence-based monitoring of the DO concentration using low-cost light-emitting diodes. To demonstrate the general utility of the platform for both aerobic and anaerobic culture, three bacteria with differential oxygen requirements (E. coli, A. viscosus, and F. nucleatum), as well as a model mammalian cell line (murine embryonic fibroblast cells (3T3)), were cultured. Growth characteristics of the selected species were analyzed as a function of eight discrete DO concentrations, ranging from 0 ppm (anaerobic) to 42 ppm (fully saturated)

    Metabolic Profiling of Hypoxic Cells Revealed a Catabolic Signature Required for Cell Survival

    Get PDF
    Hypoxia is one of the features of poorly vascularised areas of solid tumours but cancer cells can survive in these areas despite the low oxygen tension. The adaptation to hypoxia requires both biochemical and genetic responses that culminate in a metabolic rearrangement to counter-balance the decrease in energy supply from mitochondrial respiration. The understanding of metabolic adaptations under hypoxia could reveal novel pathways that, if targeted, would lead to specific death of hypoxic regions. In this study, we developed biochemical and metabolomic analyses to assess the effects of hypoxia on cellular metabolism of HCT116 cancer cell line. We utilized an oxygen fluorescent probe in anaerobic cuvettes to study oxygen consumption rates under hypoxic conditions without the need to re-oxygenate the cells and demonstrated that hypoxic cells can maintain active, though diminished, oxidative phosphorylation even at 1% oxygen. These results were further supported by in situ microscopy analysis of mitochondrial NADH oxidation under hypoxia. We then used metabolomic methodologies, utilizing liquid chromatography–mass spectrometry (LC-MS), to determine the metabolic profile of hypoxic cells. This approach revealed the importance of synchronized and regulated catabolism as a mechanism of adaptation to bioenergetic stress. We then confirmed the presence of autophagy under hypoxic conditions and demonstrated that the inhibition of this catabolic process dramatically reduced the ATP levels in hypoxic cells and stimulated hypoxia-induced cell death. These results suggest that under hypoxia, autophagy is required to support ATP production, in addition to glycolysis, and that the inhibition of autophagy might be used to selectively target hypoxic regions of tumours, the most notoriously resistant areas of solid tumours

    Bafilomycin A1 activates respiration of neuronal cells via uncoupling associated with flickering depolarization of mitochondria

    Get PDF
    Bafilomycin A1 (Baf) induces an elevation of cytosolic Ca2+ and acidification in neuronal cells via inhibition of the V-ATPase. Also, Baf uncouples mitochondria in differentiated PC12 (dPC12), dSH-SY5Y cells and cerebellar granule neurons, and markedly elevates their respiration. This respiratory response in dPC12 is accompanied by morphological changes in the mitochondria and decreases the mitochondrial pH, Ca2+ and ΔΨm. The response to Baf is regulated by cytosolic Ca2+ fluxes from the endoplasmic reticulum. Inhibition of permeability transition pore opening increases the depolarizing effect of Baf on the ΔΨm. Baf induces stochastic flickering of the ΔΨm with a period of 20 ± 10 s. Under conditions of suppressed ATP production by glycolysis, oxidative phosphorylation impaired by Baf does not provide cells with sufficient ATP levels. Cells treated with Baf become more susceptible to excitation with KCl. Such mitochondrial uncoupling may play a role in a number of (patho)physiological conditions induced by Baf

    pH-sensitive perylene bisimide probes for live cell fluorescence lifetime imaging

    No full text
    Several new perylene bisimide (PBI) probes comprising oligo-guanidine conjugates and cationic hydrogel nanoparticle structures were designed for sensing intracellular pH in live cell fluorescence lifetime imaging microscopy (FLIM). Using adherent mammalian cells (2D) and neurosphere (3D) cell models, we evaluated their performance by confocal FLIM-TCSPC. The nanoparticle PBI probe showed stable pH calibration and lifetime changes from 4.7 to 3.7 ns between pH 4.4 and 8 attributed to photo-induced electron transfer (PET). The molecular oligo-guanidine probe showed fast cell penetration and bright staining, but its calibration is affected by the microenvironment being unreliable for quantitative FLIM. Thus, nanoparticle structures are preferred for the design of quantitative pH measurement by FLIM. High brightness and photostability, efficient staining of different cell types and positive optical response to acidification in fluorescence intensity and lifetime modalities are the advantages of the nanoparticle PBI probes compared to conventional pH probes such as BCECF (2',7'-bis-(2-carboxyethyl)-5,6-carboxyfluorescein). Other PBI derivatives with stronger PET can be developed for future high-resolution FLIM of intracellular pH

    Photophysical properties of the new phosphorescent platinum(II) and palladium(II) complexes of benzoporphyrins and chlorins

    No full text
    Several phosphorescent platinum(II) and palladium(II) complexes of tetrapyrrole dyes are prepared in an attempt to improve the compatibility with red laser diodes. The nature of meso-substituents in benzoporphyrin macrocycle is found to affect mainly the position of the Soret band and has little influence on the Q-bands. In rigid polymeric matrices these dyes possess more favourable photochemical properties than corresponding meso-tetraphenyltetrabenzoporphyrins. Platinum(II) chlorins show good compatibility with 635 nm laser diode and 632.8 line of He-Ne laser, and have moderate brightness with emission yields ∼2%. Photophysical properties and photostability of these dyes is assessed and compared with the known NIR-emitting oxygen indicators. © 2009 Elsevier B.V. All rights reserved
    corecore