101,534 research outputs found
Einstein-Podolsky-Rosen paradox and quantum steering in pulsed optomechanics
We describe how to generate an Einstein-Podolsky-Rosen (EPR) paradox between
a mesoscopic mechanical oscillator and an optical pulse. We find two types of
paradox, defined by whether it is the oscillator or the pulse that shows the
effect Schrodinger called "steering". Only the oscillator paradox addresses the
question of mesoscopic local reality for a massive system. In that case, EPR's
"elements of reality" are defined for the oscillator, and it is these elements
of reality that are falsified (if quantum mechanics is complete). For this sort
of paradox, we show that a thermal barrier exists, meaning that a threshold
level of pulse-oscillator interaction is required for a given thermal
occupation n_0 of the oscillator. We find there is no equivalent thermal
barrier for the entanglement of the pulse with the oscillator, nor for the EPR
paradox that addresses the local reality of the optical system. Finally, we
examine the possibility of an EPR paradox between two entangled oscillators.
Our work highlights the asymmetrical effect of thermal noise on quantum
nonlocality.Comment: 9 pages, 7 figure
in the Standard Model
In this paper we investigate the possibility of studying form
factor using the semi-inclusive decays . In general
semi-inclusive decays involve several hadronic parameters. But for
decays we find that in the factorization
approximation, the only unknown hadronic parameters are the form factors
. Therefore these form factors can be studied in decays. Using theoretical model calculations for the form
factors the branching ratios for and
, with the cut GeV, are
estimated to be in the ranges of and ,
respectively, depending on the value of . The combined branching ratio
for is about and is insensitive to . We also discuss CP
asymmetries in these decay modes.Comment: RevTex 8 pages and two figure
Recommended from our members
Bioinspired Multifunctional Anti-icing Hydrogel
The recent anti-icing strategies in the state of the art mainly focused on three aspects: inhibiting ice nucleation, preventing ice propagation, and decreasing ice adhesion strength. However, it is has proved difficult to prevent ice nucleation and propagation while decreasing adhesion simultaneously, due to their highly distinct, even contradictory design principles. In nature, anti-freeze proteins (AFPs) offer a prime example of multifunctional integrated anti-icing materials that excel in all three key aspects of the anti-icing process simultaneously by tuning the structures and dynamics of interfacial water. Here, inspired by biological AFPs, we successfully created a multifunctional anti-icing material based on polydimethylsiloxane-grafted polyelectrolyte hydrogel that can tackle all three aspects of the anti-icing process simultaneously. The simplicity, mechanical durability, and versatility of these smooth hydrogel surfaces make it a promising option for a wide range of anti-icing applications
Dynamical Quantum Memories
We propose a dynamical approach to quantum memories using an
oscillator-cavity model. This overcomes the known difficulties of achieving
high quantum input-output fidelity with storage times long compared to the
input signal duration. We use a generic model of the memory response, which is
applicable to any linear storage medium ranging from a superconducting device
to an atomic medium. The temporal switching or gating of the device may either
be through a control field changing the coupling, or through a variable
detuning approach, as in more recent quantum memory experiments. An exact
calculation of the temporal memory response to an external input is carried
out. This shows that there is a mode-matching criterion which determines the
optimum input and output mode shape. This optimum pulse shape can be modified
by changing the gate characteristics. In addition, there is a critical coupling
between the atoms and the cavity that allows high fidelity in the presence of
long storage times. The quantum fidelity is calculated both for the coherent
state protocol, and for a completely arbitrary input state with a bounded total
photon number. We show how a dynamical quantum memory can surpass the relevant
classical memory bound, while retaining a relatively long storage time.Comment: 16 pages, 9 figure
Quantum Entanglement of Electromagnetic Fields in Non-inertial Reference Frames
Recently relativistic quantum information has received considerable attention
due to its theoretical importance and practical application. Especially,
quantum entanglement in non-inertial reference frames has been studied for
scalar and Dirac fields. As a further step along this line, we here shall
investigate quantum entanglement of electromagnetic fields in non-inertial
reference frames. In particular, the entanglement of photon helicity entangled
state is extensively analyzed. Interestingly, the resultant logarithmic
negativity and mutual information remain the same as those for inertial
reference frames, which is completely different from that previously obtained
for the particle number entangled state.Comment: more explanatory material added in the introduction, version to
appear in Journal of Physics
On the Ground State of Two Flavor Color Superconductor
The diquark condensate susceptibility in neutral color superconductor at
moderate baryon density is calculated in the frame of two flavor
Nambu-Jona-Lasinio model. When color chemical potential is introduced to keep
charge neutrality, the diquark condensate susceptibility is negative in the
directions without diquark condensate in color space, which may be regarded as
a signal of the instability of the conventional ground state with only diquark
condensate in the color 3 direction.Comment: 4 pages, 2 figure
A Template for Implementing Fast Lock-free Trees Using HTM
Algorithms that use hardware transactional memory (HTM) must provide a
software-only fallback path to guarantee progress. The design of the fallback
path can have a profound impact on performance. If the fallback path is allowed
to run concurrently with hardware transactions, then hardware transactions must
be instrumented, adding significant overhead. Otherwise, hardware transactions
must wait for any processes on the fallback path, causing concurrency
bottlenecks, or move to the fallback path. We introduce an approach that
combines the best of both worlds. The key idea is to use three execution paths:
an HTM fast path, an HTM middle path, and a software fallback path, such that
the middle path can run concurrently with each of the other two. The fast path
and fallback path do not run concurrently, so the fast path incurs no
instrumentation overhead. Furthermore, fast path transactions can move to the
middle path instead of waiting or moving to the software path. We demonstrate
our approach by producing an accelerated version of the tree update template of
Brown et al., which can be used to implement fast lock-free data structures
based on down-trees. We used the accelerated template to implement two
lock-free trees: a binary search tree (BST), and an (a,b)-tree (a
generalization of a B-tree). Experiments show that, with 72 concurrent
processes, our accelerated (a,b)-tree performs between 4.0x and 4.2x as many
operations per second as an implementation obtained using the original tree
update template
- …