22,165 research outputs found

    Particle-Hole Symmetry Breaking and the 5/2 Fractional Quantum Hall Effect

    Get PDF
    We report on the study of the fractional quantum Hall effect at the filling factor 5/2 using exact diagonalization method with torus geometry. The particle-hole symmetry breaking effect is considered using an additional three-body interaction. Both Pfaffian and anti-Pfaffian states can be the ground state depending on the sign of the three-body interaction. The results of the low-energy spectrum, the wave function overlap, and the particle-hole parity evolution, have shown the clear evidence of a direct sharp transition (possibly first-order) from the Pfaffian to the anti-Pfaffian state at the Coulomb point. A quantum phase diagram is established, where one finds further transitions from the Pfaffian or anti-Pfaffian state to the nearby compressible phases induced by a change of the pseudopotential.Comment: 4 pages, 4 figure

    Broken-Symmetry States of Dirac Fermions in Graphene with A Partially Filled High Landau Level

    Get PDF
    We report on numerical study of the Dirac fermions in partially filled N=3 Landau level (LL) in graphene. At half-filling, the equal-time density-density correlation function displays sharp peaks at nonzero wavevectors ±q\pm {\bf q^{*}}. Finite-size scaling shows that the peak value grows with electron number and diverges in the thermodynamic limit, which suggests an instability toward a charge density wave. A symmetry broken stripe phase is formed at large system size limit, which is robust against purturbation from disorder scattering. Such a quantum phase is experimentally observable through transport measurements. Associated with the special wavefunctions of the Dirac LL, both stripe and bubble phases become possible candidates for the ground state of the Dirac fermions in graphene with lower filling factors in the N=3 LL.Comment: Contains are slightly changed. Journal reference and DOI are adde

    Effects of Collisional Decoherence on Multipartite Entanglement - How would entanglement not be relatively common?

    Full text link
    We consider the collision model of Ziman {\em et al.} and study the robustness of NN-qubit Greenberger-Horne-Zeilinger (GHZ), W, and linear cluster states. Our results show that NN-qubit entanglement of GHZ states would be extremely fragile under collisional decoherence, and that of W states could be more robust than of linear cluster states. We indicate that the collision model of Ziman {\em et al.} could provide a physical mechanism to some known results in this area of investigations. More importantly, we show that it could give a clue as to how NN-partite distillable entanglement would be relatively rare in our macroscopic classical world.Comment: 10 page

    Exact renormalization in quantum spin chains

    Full text link
    We introduce a real-space exact renormalization group method to find exactly solvable quantum spin chains and their ground states. This method allows us to provide a complete list for exact solutions within SU(2) symmetric quantum spin chains with S4S\leq 4 and nearest-neighbor interactions, as well as examples with S=5. We obtain two classes of solutions: One of them converges to the fixed points of renormalization group and the ground states are matrix product states. Another one does not have renormalization fixed points and the ground states are partially ferromagnetic states.Comment: 8 pages, 5 figures, references added, published versio

    Tracing potential energy surfaces of electronic excitations via their transition origins: application to Oxirane

    Get PDF
    We show that the transition origins of electronic excitations identified by quantified natural transition orbital (QNTO) analysis can be employed to connect potential energy surfaces (PESs) according to their character across a widerange of molecular geometries. This is achieved by locating the switching of transition origins of adiabatic potential surfaces as the geometry changes. The transition vectors for analysing transition origins are provided by linear response time-dependent density functional theory (TDDFT) calculations under the Tamm-Dancoff approximation. We study the photochemical CO ring opening of oxirane as an example and show that the results corroborate the traditional Gomer-Noyes mechanism derived experimentally. The knowledge of specific states for the reaction also agrees well with that given by previous theoretical work using TDDFT surface-hopping dynamics that was validated by high-quality quantum Monte Carlo calculations. We also show that QNTO can be useful for considerably larger and more complex systems: by projecting the excitations to those of a reference oxirane molecule, the approach is able to identify and analyse specific excitations of a trans-2,3-diphenyloxirane molecule.Comment: 14 pages, 12 figure
    corecore