1,040 research outputs found

    Collective magnetic excitations of C4C_{4} symmetric magnetic states in iron-based superconductors

    Full text link
    We study the collective magnetic excitations of the recently discovered C4C_{4} symmetric spin-density wave states of iron-based superconductors with particular emphasis on their orbital character based on an itinerant multiorbital approach. This is important since the C4C_{4} symmetric spin-density wave states exist only at moderate interaction strengths where damping effects from a coupling to the continuum of particle-hole excitations strongly modifies the shape of the excitation spectra compared to predictions based on a local moment picture. We uncover a distinct orbital polarization inherent to magnetic excitations in C4C_{4} symmetric states, which provide a route to identify the different commensurate magnetic states appearing in the continuously updated phase diagram of the iron-pnictide family.Comment: 5+7 pages, 3+2 figure

    Dynamical magnetic susceptibility in the lamellar cobaltate superconductor Na_xCoO_2â‹…y\cdot yH_2O

    Full text link
    We systematically analyze the influence of the superconducting gap symmetry and the electronic structure on the dynamical spin susceptibility in superconducting Na_xCoO_2⋅y\cdot yH_2O within a three different models: the single a_{1g}-band model with nearest-neighbor hoppings, the realistic three-band t_{2g}-model with, and without e'_g pockets present at the Fermi surface. We show that the magnetic response in the normal state is dominated by the incommensurate antiferromagnetic spin density wave fluctuations at large momenta in agreement with experimental temperature dependence of the spin-lattice relaxation rate. Also, we demonstrate that the presence or the absence of the e'_g-pockets at the Fermi surface does not affect significantly this conclusion. In the superconducting state our results for d_{x^2-y^2}- or d_{xy}-wave symmetries of the superconducting order parameter are consistent with experimental data and exclude nodeless dx2−y2+idxyd_{x^2-y^2} + id_{xy}-wave symmetry. We further point out that the spin-resonance peak proposed earlier is improbable for the realistic band structure of Na_xCoO_2⋅y\cdot yH_2O. Moreover, even if present the resonance peak is confined to the antiferromagnetic wave vector and disappears away from it.Comment: Published version, PACS: 74.70.-b; 75.40.Gb; 74.20.Rp; 74.25.J

    Possible isotope effect on the resonance peak formation in high-Tc_c cuprates

    Full text link
    Starting from the three-band p−dp-d Hubbard Hamiltonian we derive an effective t−Jt-J model including electron-phonon interaction of quasiparticles with optical phonons. Within the effective Hamiltonian we analyze the influence of electronic correlations and electron-phonon interaction on the dynamical spin susceptibility in layered cuprates. We find a huge isotope effect on the resonance peak in the magnetic spin susceptibility, Imχ(q,ω){Im}\chi({\bf q},\omega), seen by inelastic neutron scattering. It results from both the electron-phonon coupling and the electronic correlation effects taken into account beyond random phase approximation(RPA) scheme. We find at optimal doping the isotope coeffiecient αres≈0.35\alpha_{res} \approx 0.35 which can be further tested experimentally.Comment: revised version, new figure is added. Phys. Rev. B 69, 0945XX (2004); in pres

    Knight Shift and Leading Superconducting Instability From Spin Fluctuations in Sr2RuO4

    Full text link
    Recent nuclear magnetic resonance studies [A. Pustogow {\it et al.}, arXiv:1904.00047] have challenged the prevalent chiral triplet pairing scenario proposed for Sr2_2RuO4_4. To provide guidance from microscopic theory as to which other pair states might be compatible with the new data, we perform a detailed theoretical study of spin-fluctuation mediated pairing for this compound. We map out the phase diagram as a function of spin-orbit coupling, interaction parameters, and band-structure properties over physically reasonable ranges, comparing when possible with photoemission and inelastic neutron scattering data information. We find that even-parity pseudospin singlet solutions dominate large regions of the phase diagram, but in certain regimes spin-orbit coupling favors a near-nodal odd-parity triplet superconducting state, which is either helical or chiral depending on the proximity of the γ\gamma band to the van Hove points. A surprising near-degeneracy of the nodal s′s^\prime- and dx2−y2d_{x^2-y^2}-wave solutions leads to the possibility of a near-nodal time-reversal symmetry broken s′+idx2−y2s^\prime+id_{x^2-y^2} pair state. Predictions for the temperature dependence of the Knight shift for fields in and out of plane are presented for all states.Comment: 5 pages (3 figures) + supplementary informatio

    Temperature Dependence of the Cu(2) NQR Line Width in YBa2_2Cu3_3O7−y_{7-y}

    Full text link
    Systematic measurements of the 63^{63}Cu(2) NQR line width were performed in underdoped YBa2_2Cu3_3O7−y_{7-y} samples over the temperature range 4.2 K <T<300<T<300 K. It was shown that the copper NQR line width monotonically increases upon lowering temperature in the below-critical region, resembling temperature behavior of the superconducting gap. The observed dependence is explained by the fact that the energy of a condensate of sliding charge-current states of the charge-density-wave type depends on the phase of order parameter. Calculations show that this dependence appears only at T<TcT<T_c. Quantitative estimates of the line broadening at T<TcT<T_c agree with the measurement results.Comment: 4 pages, 2 figure

    Polaron Effects on Superexchange Interaction: Isotope Shifts of TNT_N, TCT_C, and T∗T^* in Layered Copper Oxides

    Full text link
    A compact expression has been obtained for the superexchange coupling of magnetic ions via intermediate anions with regard to polaron effects at both magnetic ions and intermediate anions. This expression is used to analyze the main features of the behavior of isotope shifts for temperatures of three types in layered cuprates: the Neel temperatures (TNT_N), critical temperatures of transitions to a superconducting state (TCT_C), and characteristic temperatures of the pseudogap in the normal state (T∗T^*).Comment: 4 pages, 1 figur

    Eliashberg theory of superconductivity and inelastic rare-earth impurity scattering in filled skutterudite La1−x_{1-x}Prx_{x}Os4_{4}Sb12_{12}

    Full text link
    We study the influence of inelastic rare-earth impurity scattering on electron-phonon mediated superconductivity and mass renormalization in (La1−x_{1-x}Prx_{x})Os4_{4}Sb12_{12} compounds. Solving the strong coupling Eliashberg equations we find that the dominant quadrupolar component of the inelastic scattering on Pr impurities yields an enhancement of the superconducting transition temperature Tc_c in LaOs4_{4}Sb12_{12} and increases monotonically as a function of Pr concentration. The calculated results are in good agreement with the experimentally observed Tc(x)_c (x) dependence. Our analysis suggests that phonons and quadrupolar excitations cause the attractive electron interaction which results in the formation of Cooper pairs and singlet superconductivity in PrOs4_{4}Sb12_{12}.Comment: 5 pages,4 figures, revised title suggested by editor, original fig.4 and fig.5 combined together, discussion added before conclusio

    Dynamical charge susceptibility in layered cuprates: the influence of screened inter-site Coulomb repulsion

    Full text link
    The analytical expression for dynamical charge susceptibility in layered cuprates has been derived in the frame of singlet-correlated band model beyond random-phase-approximation (RPA) scheme. Our calculations performed near optimal doping regime show that there is a peak in real part of the charge susceptibility χ(q,ω)\chi({\bf q},\omega) at {\bf Q} = (π\pi, π\pi) at strong enough inter-site Coulomb repulsion. Together with the strong maximum in the Im χ(Q,ω)\chi({\bf Q},\omega) at 15 meV it confirms the formation of low-energetic plasmons or charge fluctuations. This provides a jsutification that these excitations are important and together with a spin flcutuations can contribute to the Cooper pairing in layered cuprates. Analysing the charge susceptibilitiy with respect to an instability we obtain a new plasmon branch, ωq\omega_{\bf q}, along the Brillouin Zone. In particular, we have found that it goes to zero near {\bf Q}CDW≈(2π/3,2π/3)_{CDW} \approx (2\pi/3, 2\pi/3)

    Temperature dependence of the penetration depth of a magnetic field in the presence of dispersion of the superconducting and charge density wave order parameters

    Get PDF
    © 2016, Pleiades Publishing, Inc.A formula for computing the temperature dependence of the London penetration depth of a magnetic field in the regime of coexistence of charge density waves and superconductivity has been proposed taking into account the dependence of both order parameters on the wave vector. It has been shown that an anomalously high diamagnetic response of the system and a finite value of the superconducting current persist even at Tc ≤ T ≤ TCDW
    • …
    corecore