291 research outputs found

    Where the electroweak phase transition ends

    Get PDF
    We give a more precise characterisation of the end of the electroweak phase transition in the framework of the effective 3d SU(2)--Higgs lattice model than has been given before. The model has now been simulated at gauge couplings beta_G=12 and 16 for Higgs masses M_H^*=70, 74, 76 and 80 GeV up to lattices 96^3 and the data have been used for reweighting. The breakdown of finite volume scaling of the Lee-Yang zeroes indicates the change from a first order transition to a crossover at lambda_3/g_3^2=0.102(2) in rough agreement with results of Karsch et al (hep-lat/9608087) at \beta_G=9 and smaller lattices. The infinite volume extrapolation of the discontinuity Delta /g_3^2 turns out to be zero at lambda_3/g_3^2=0.107(2) being an upper limit. We comment on the limitations of the second method.Comment: RevTeX, 19 pages, 11 figures, 2 tables; additional MC-data near the endpoint considere

    Evaluation available encapsulation materials for low-cost long-life silicon photovoltaic arrays

    Get PDF
    Experimental evaluation of selected encapsulation designs and materials based on an earlier study which have potential for use in low cost, long-life photovoltaic arrays are reported. The performance of candidate materials and encapsulated cells were evaluated principally for three types of encapsulation designs based on their potentially low materials and processing costs: (1) polymeric coatings, transparent conformal coatings over the cell with a structural-support substrate; (2) polymeric film lamination, cells laminated between two films or sheets of polymeric materials; and (3) glass-covered systems, cells adhesively bonded to a glass cover (superstrate) with a polymeric pottant and a glass or other substrate material. Several other design types, including those utilizing polymer sheet and pottant materials, were also included in the investigation

    Lattice QCD with mixed actions

    Full text link
    We discuss some of the implications of simulating QCD when the action used for the sea quarks is different from that used for the valence quarks. We present exploratory results for the hadron mass spectrum and pseudoscalar meson decay constants using improved staggered sea quarks and HYP-smeared overlap valence quarks. We propose a method for matching the valence quark mass to the sea quark mass and demonstrate it on UKQCD clover data in the simpler case where the sea and valence actions are the same.Comment: 15 pages, 10 figures some minor modification to text and figures. Accepted for publicatio

    Adaptive Step Size for Hybrid Monte Carlo Algorithm

    Get PDF
    We implement an adaptive step size method for the Hybrid Monte Carlo a lgorithm. The adaptive step size is given by solving a symmetric error equation. An integr ator with such an adaptive step size is reversible. Although we observe appreciable variations of the step size, the overhead of the method exceeds its benefits. We propose an explanation for this phenomenon.Comment: 13 pages, 5 Postscript figures, late

    String Breaking in Non-Abelian Gauge Theories with Fundamental Matter Fields

    Get PDF
    We present clear numerical evidence for string breaking in three-dimensional SU(2) gauge theory with fundamental bosonic matter through a mixing analysis between Wilson loops and meson operators representing bound states of a static source and a dynamical scalar. The breaking scale is calculated in the continuum limit. In units of the lightest glueball we find rbmG13.6r_{\rm b} m_G\approx13.6. The implications of our results for QCD are discussed.Comment: 4 pages, 2 figures; equations (4)-(6) corrected, numerical results and conclusions unchange

    Subcritical Fluctuations at the Electroweak Phase Transition

    Get PDF
    We study the importance of thermal fluctuations during the electroweak phase transition. We evaluate in detail the equilibrium number density of large amplitude subcritical fluctuations and discuss the importance of phase mixing to the dynamics of the phase transition. Our results show that, for realistic Higgs masses, the phase transition can be completed by the percolation of the true vacuum, induced by the presence of subcritical fluctuations.Comment: RevTeX, 4 eps figs (uses epsf.sty), 26 pages, to be published in Phys. Rev.

    Speeding up finite step-size updating of full QCD on the lattice

    Get PDF
    We propose various improvements of finite step-size updating for full QCD on the lattice that might turn finite step-size updating into a viable alternative to the hybrid Monte Carlo algorithm. These improvements are noise reduction of the noisy estimator of the fermion determinant, unbiased inclusion of the hopping parameter expansion and a multi-level Metropolis scheme. First numerical tests are performed for the 2 dimensional Schwinger model with two flavours of Wilson fermions and for QCD two flavours of Wilson fermions and Schr"odinger functional boundary conditions.Comment: 22 pages, 1 figur

    Sphaleron Effects Near the Critical Temperature

    Full text link
    We discuss one-loop radiative corrections to the sphaleron-induced baryon number-violating transition rate near the electroweak phase transition in the standard model. We emphasize that in the case of a first-order transition a rearrangement of the loop expansion is required close to the transition temperature. The corresponding expansion parameter, the effective 3-dimensional gauge coupling approaches a finite λ\lambda dependent value at the critical temperature. The λ\lambda (Higgs mass) dependence of the 1-loop radiative corrections is discussed in the framework of the heat kernel method. Radiative corrections are small compared to the leading sphaleron contribution as long as the Higgs mass is small compared to the W mass. To 1-loop accuracy, there is no Higgs mass range compatible with experimental limits where washing-out of a B+L asymmetry could be avoided for the minimal standard model with one Higgs doublet.Comment: 17 pages, RevTeX, (4 figures in a separate uuencoded file), HD-THEP-93-23re

    Electroweak Bubble Nucleation, Nonperturbatively

    Get PDF
    We present a lattice method to compute bubble nucleation rates at radiatively induced first order phase transitions, in high temperature, weakly coupled field theories, nonperturbatively. A generalization of Langer's approach, it makes no recourse to saddle point expansions and includes completely the dynamical prefactor. We test the technique by applying it to the electroweak phase transition in the minimal standard model, at an unphysically small Higgs mass which gives a reasonably strong phase transition (lambda/g^2 =0.036, which corresponds to m(Higgs)/m(W) = 0.54 at tree level but does not correspond to a positive physical Higgs mass when radiative effects of the top quark are included), and compare the results to older perturbative and other estimates. While two loop perturbation theory slightly under-estimates the strength of the transition measured by the latent heat, it over-estimates the amount of supercooling by a factor of 2.Comment: 48 pages, including 16 figures. Minor revisions and typo fixes, nothing substantial, conclusions essentially unchange

    Point: Put Simply, Standardization of Cardiac Troponin I Is Complicated

    Full text link
    corecore