962 research outputs found
Impact parameter dependence of heavy ion e+ e- pair production to all orders in Z alpha
The heavy ion probability for continuum e+ e- pair production has been
calculated to all orders in Z alpha as a function of impact parameter. The
formula resulting from an exact solution of the semiclassical Dirac equation in
the ultrarelativistic limit is evaluated numerically. In a calculation of gamma
= 100 colliding Au ions the probability of e+ e- pair production is reduced
from the perturbation theory result throughout the impact parameter range.Comment: 20 pages, latex, revtex, 6 eps figures. Revised Phys. Rev. C version
with minor additions, one figure added, and added reference
A light-fronts approach to electron-positron pair production in ultrarelativistic heavy-ion collisions
We perform a gauge-transformation on the time-dependent Dirac equation
describing the evolution of an electron in a heavy-ion collision to remove the
explicit dependence on the long-range part of the interaction. We solve, in an
ultra-relativistic limit, the gauged-transformed Dirac equation using
light-front variables and a light-fronts representation, obtaining
non-perturbative results for the free pair-creation amplitudes in the collider
frame. Our result reproduces the result of second-order perturbation theory in
the small charge limit while non-perturbative effects arise for realistic
charges of the ions.Comment: 39 pages, Revtex, 7 figures, submitted to PR
Solar Neutrinos and the Eclipse Effect
The solar neutrino counting rate in a real time detector like
Super--Kamiokanda, SNO, or Borexino is enhanced due to neutrino oscillations in
the Moon during a partial or total solar eclipse. The enhancement is calculated
as a function of the neutrino parameters in the case of three flavor mixing.
This enhancement, if seen, can further help to determine the neutrino
parameters.Comment: 24 Pages Revtex, 8 figures as one ps file. To appear in Phys. Rev. D;
Some typos corrected and a reference adde
Strong suppression of Coulomb corrections to the cross section of e+e- pair production in ultrarelativistic nuclear collisions
The Coulomb corrections to the cross section of pair production in
ultrarelativistic nuclear collisions are calculated in the next-to-leading
approximation with respect to the parameter
( are the Lorentz factors of colliding nuclei). We found
considerable reduction of the Coulomb corrections even for large
due to the suppression of the production of pair
with the total energy of the order of a few electron masses in the rest frame
of one of the nuclei. Our result explains why the deviation from the Born
result were not observed in the experiment at SPS.Comment: 4 pages, RevTe
Temperature dependence of polarization relaxation in semiconductor quantum dots
The decay time of the linear polarization degree of the luminescence in
strongly confined semiconductor quantum dots with asymmetrical shape is
calculated in the frame of second-order quasielastic interaction between
quantum dot charge carriers and LO phonons. The phonon bottleneck does not
prevent significantly the relaxation processes and the calculated decay times
can be of the order of a few tens picoseconds at temperature K,
consistent with recent experiments by Paillard et al. [Phys. Rev. Lett.
{\bf86}, 1634 (2001)].Comment: 4 pages, 4 figure
Probing the central black hole in M87 with gamma-rays
Recent high-sensitivity observation of the nearby radio galaxy M87 have
provided important insights into the central engine that drives the large-scale
outflows seen in radio, optical and X-rays. This review summarizes the
observational status achieved in the high energy (HE;<100 GeV) and very high
energy (VHE; >100 GeV) gamma-ray domains, and discusses the theoretical
progress in understanding the physical origin of this emission and its relation
to the activity of the central black hole.Comment: Invited compact review to be published in Modern Physics Letters A;
19 pages, 4 figure
Kaluza-Klein Dark Matter, Electrons and Gamma Ray Telescopes
Kaluza-Klein dark matter particles can annihilate efficiently into
electron-positron pairs, providing a discrete feature (a sharp edge) in the
cosmic spectrum at an energy equal to the particle's mass (typically
several hundred GeV to one TeV). Although this feature is probably beyond the
reach of satellite or balloon-based cosmic ray experiments (those that
distinguish the charge and mass of the primary particle), gamma ray telescopes
may provide an alternative detection method. Designed to observe very
high-energy gamma-rays, ACTs also observe the diffuse flux of electron-induced
electromagnetic showers. The GLAST satellite, designed for gamma ray astronomy,
will also observe any high energy showers (several hundred GeV and above) in
its calorimeter. We show that high-significance detections of an
electron-positron feature from Kaluza-Klein dark matter annihilations are
possible with GLAST, and also with ACTs such as HESS, VERITAS or MAGIC.Comment: 10 pages, 2 figure
Exciton spin relaxation in single semiconductor quantum dots
We study the relaxation of the exciton spin (longitudinal relaxation time
) in single asymmetrical quantum dots due to an interplay of the
short--range exchange interaction and acoustic phonon deformation. The
calculated relaxation rates are found to depend strongly on the dot size,
magnetic field and temperature. For typical quantum dots and temperatures below
100 K, the zero--magnetic field relaxation times are long compared to the
exciton lifetime, yet they are strongly reduced in high magnetic fields. We
discuss explicitly quantum dots based on (In,Ga)As and (Cd,Zn)Se semiconductor
compounds.Comment: accepted for Phys. Rev.
On the New Conditions for a Total Neutrino Conversion in a Medium
We show that the arguments forming the basis for the claim that the
conditions for total neutrino conversion derived and studied in detail in [1,2]
``are just the conditions of the parametric resonance of neutrino oscillations
supplemented by the requirement that the parametric enhancement be complete'',
given in [4] have flaws which make the claim physically questionable. We show
also that in the case of the transitions in the Earth of the
Earth-core-crossing solar and atmospheric neutrinos the peaks in the relevant
transitions probabilities , associated with the new conditions, , are of physical relevance - in contrast to what is suggested in
[4]. Actually, the enhancement of in any region of the corresponding
parameter space are essentially determined by these absolute maxima of . We comment on few other aspects of the results derived in [1,2,3] which
have been misunderstood and/or misinterpreted in [4].Comment: 8 pages, late
- âŠ