1,676 research outputs found

    The effect of magnetic fields on star cluster formation

    Get PDF
    We examine the effect of magnetic fields on star cluster formation by performing simulations following the self-gravitating collapse of a turbulent molecular cloud to form stars in ideal MHD. The collapse of the cloud is computed for global mass-to-flux ratios of infinity, 20, 10, 5 and 3, that is using both weak and strong magnetic fields. Whilst even at very low strengths the magnetic field is able to significantly influence the star formation process, for magnetic fields with plasma beta < 1 the results are substantially different to the hydrodynamic case. In these cases we find large-scale magnetically-supported voids imprinted in the cloud structure; anisotropic turbulent motions and column density structure aligned with the magnetic field lines, both of which have recently been observed in the Taurus molecular cloud. We also find strongly suppressed accretion in the magnetised runs, leading to up to a 75% reduction in the amount of mass converted into stars over the course of the calculations and a more quiescent mode of star formation. There is also some indication that the relative formation efficiency of brown dwarfs is lower in the strongly magnetised runs due to the reduction in the importance of protostellar ejections.Comment: 16 pages, 9 figures, 8 very pretty movies, MNRAS, accepted. Version with high-res figures + movies available from http://www.astro.ex.ac.uk/people/dprice/pubs/mcluster/index.htm

    Reliable material characterisation at low x-ray energy through the phase-attenuation duality

    Get PDF
    We present a comparison of between two polychromatic X-ray imaging techniques used to characterise materials: dual energy (DE) attenuation and phase-attenuation (PA), the latter being implemented via a scanning-based Edge Illumination system. The system-independent method to extract electron density and effective atomic number developed by S.G. Azevedo et al IEEE Transactions on nuclear science, Vol. 63, 341 (2016) - SIRZ - is employed for the analysis of planar images, with the same methodology being used for both approaches. We show PA to be more reliable at low energy X-ray spectra (40 kVp), where conventional DE breaks down due to insufficient separation of the energies used in measurements, and to produce results comparable with “standard” DE implemented at high energy (120 kVp), therefore offering a valuable alternative in applications where the use of high x-ray energy is impractical

    Post-Acquisition Mask Misalignment Correction for Edge Illumination X-ray Phase Contrast Imaging

    Get PDF
    Edge illumination x-ray phase contrast imaging uses a set of apertured masks to translate phase effects into variation of detected intensity. While the system is relatively robust against misalignment, mask movement during acquisition can lead to gradient artifacts. A method has been developed to correct the images by quantifying the misalignment post-acquisition and implementing correction maps to remove the gradient artifact. Images of a woven carbon fiber composite plate containing porosity were used as examples to demonstrate the image correction process. The gradient formed during image acquisition was removed without affecting the image quality, and results were subsequently used for quantification of porosity, indicating that the gradient correction did not affect the quantitative content of the images

    Forming the First Stars in the Universe: The Fragmentation of Primordial Gas

    Full text link
    In order to constrain the initial mass function (IMF) of the first generation of stars (Population III), we investigate the fragmentation properties of metal-free gas in the context of a hierarchical model of structure formation. We investigate the evolution of an isolated 3-sigma peak of mass 2x10^6 M_solar which collapses at z_coll=30 using Smoothed Particle Hydrodynamics. We find that the gas dissipatively settles into a rotationally supported disk which has a very filamentary morphology. The gas in these filaments is Jeans unstable with M_J~10^3 M_solar. Fragmentation leads to the formation of high density (n>10^8 cm^-3) clumps which subsequently grow in mass by accreting surrounding gas and by merging with other clumps up to masses of ~10^4 M_solar. This suggests that the very first stars were rather massive. We explore the complex dynamics of the merging and tidal disruption of these clumps by following their evolution over a few dynamical times.Comment: 7 pages, 3 figures, uses emulateapj.sty. Accepted for publication in the Astrophysical Journal Letter

    Composite impact damage detection and characterization using ultrasound and X-ray NDE techniques

    Get PDF
    Combining low weight and high strength, carbon fiber reinforced composites are widely used in the aerospace industry, including for primary aircraft structures. Barely visible impact damage can compromise the structural integrity and potentially lead to failures. Edge Illumination (EI) X-ray Phase Contrast imaging (XPCi) is a novel X-ray imaging technique that uses the phase effects induced by damage to create improved contrast. For a small cross-ply composite specimen with impact damage, damage detection was compared to ultrasonic immersion C-scans. Different defect types could be located and identified, verified from the conventional ultrasonic NDE measurement

    Composite porosity characterization using X-ray edge illumination phase contrast and ultrasonic techniques

    Get PDF
    Owing to their combination of low weight and high strength, carbon fiber reinforced composites are widely used in the aerospace industry, including for primary aircraft structures. Porosity introduced by the manufacturing process can compromise structural performance and integrity, with a maximum porosity content of 2% considered acceptable for many aerospace applications. The main nondestructive evaluation (NDE) techniques used in industry are ultrasonic imaging and X-ray computed tomography, however both techniques have limitations. Edge Illumination X-ray Phase Contrast Imaging (EI XPCi) is a novel technique that exploits the phase effects induced by damage and porosity on the X-ray beam to create improved contrast. EI XPCi is a differential (i.e., sensitive to the first derivative of the phase), multi-modal phase method that uses a set of coded aperture masks to acquire and retrieve the absorption, refraction, and ultra-small-angle scattering signals, the latter arising from sub-pixel sample features. For carbon fiber-reinforced woven composite specimens with varying levels of porosity, porosity quantification obtained through various signals produced by EI XPCi was compared to ultrasonic immersion absorption C-scans and matrix digestion. The standard deviation of the differential phase is introduced as a novel signal for the quantification of porosity in composite plates, with good correlation to ultrasonic attenuation

    The Formation of the First Stars. I. The Primordial Star Forming Cloud

    Get PDF
    To constrain the nature of the very first stars, we investigate the collapse and fragmentation of primordial, metal-free gas clouds. We explore the physics of primordial star formation by means of three-dimensional simulations of the dark matter and gas components, using smoothed particle hydrodynamics, under a wide range of initial conditions, including the initial spin, the total mass of the halo, the redshift of virialization, the power spectrum of the DM fluctuations, the presence of HD cooling, and the number of particles employed in the simulation. We find characteristic values for the temperature, T ~ a few 100 K, and the density, n ~ 10^3-10^4 cm^-3, characterising the gas at the end of the initial free-fall phase. These values are rather insensitive to the initial conditions. The corresponding Jeans mass is M_J ~ 10^3 M_sun. The existence of these characteristic values has a robust explanation in the microphysics of H2 cooling, connected to the minimum temperature that can be reached with the H2 coolant, and to the critical density at which the transition takes place betweeb levels being populated according to NLTE, and according to LTE. In all cases, the gas dissipatively settles into an irregular, central configuration which has a filamentary and knotty appearance. The fluid regions with the highest densities are the first to undergo runaway collapse due to gravitational instability, and to form clumps with initial masses ~ 10^3 M_sun, close to the characteristic Jeans scale. These results suggest that the first stars might have been quite massive, possibly even very massive with M_star > 100 M_sun.Comment: Minor revisions. 26 pages, including 24 figures and 5 tables. ApJ, in press. To appear in the Dec. 20, 2001 issue (v563

    Three-dimensional Continuum Radiative Transfer Images of a Molecular Cloud Core Evolution

    Full text link
    We analyze a three-dimensional smoothed particle hydrodynamics simulation of an evolving and later collapsing pre-stellar core. Using a three-dimensional continuum radiative transfer program, we generate images at 7 micron, 15 micron, 175 micron, and 1.3 mm for different evolutionary times and viewing angles. We discuss the observability of the properties of pre-stellar cores for the different wavelengths. For examples of non-symmetric fragments, it is shown that, misleadingly, the density profiles derived from a one-dimensional analysis of the corresponding images are consistent with one-dimensional core evolution models. We conclude that one-dimensional modeling based on column density interpretation of images does not produce reliable structural information and that multidimensional modeling is required.Comment: accepted by ApJL, 4 pages, 4 figure

    Quantification of porosity in composite plates using planar X-ray phase contrast imaging

    Get PDF
    The application of planar Edge-Illumination X-ray Phase-Contrast imaging (EI-XPCi) for the non-destructive quantification of porosity in carbon fiber reinforced polymer (CFRP) specimens, a significant concern in aerospace applications, was investigated. The method enables fast, planar (2D) scans providing access to large samples. A set of woven CFRP plates with porosity content ranging from 0.7% to 10.7% was examined. In addition to standard X-ray attenuation, EI-XPCi provides differential phase and dark-field signals, sensitive to inhomogeneities and interfaces at scales above and below the system spatial resolution, respectively. The correlation with the porosity content from matrix digestion obtained from the dark-field signal was comparable to that from ultrasonic attenuation. The novel analysis of the standard deviation of differential phase (STDP), sensitive to inhomogeneities above the system resolution (approximately 12 μm), resulted in a very high correlation (R2 = 0.995) with the matrix digestion porosity content, outperforming ultrasonic attenuation measurements

    The First Stars

    Full text link
    We review recent theoretical results on the formation of the first stars in the universe, and emphasize related open questions. In particular, we discuss the initial conditions for Population III star formation, as given by variants of the cold dark matter cosmology. Numerical simulations have investigated the collapse and the fragmentation of metal-free gas, showing that the first stars were predominantly very massive. The exact determination of the stellar masses, and the precise form of the primordial initial mass function, is still hampered by our limited understanding of the accretion physics and the protostellar feedback effects. We address the importance of heavy elements in bringing about the transition from an early star formation mode dominated by massive stars, to the familiar mode dominated by low mass stars, at later times. We show how complementary observations, both at high redshifts and in our local cosmic neighborhood, can be utilized to probe the first epoch of star formation.Comment: 38 pages, 10 figures, draft version for 2004 Annual Reviews of Astronomy and Astrophysics, high-resolution version available at http://cfa-www.harvard.edu/~vbromm
    • …
    corecore