5,039 research outputs found

    Parallel-propagating Fluctuations at Proton-kinetic Scales in the Solar Wind are Dominated by Kinetic Instabilities

    Get PDF
    We use magnetic helicity to characterise solar wind fluctuations at proton-kinetic scales from Wind observations. For the first time, we separate the contributions to helicity from fluctuations propagating at angles quasi-parallel and oblique to the local mean magnetic field, B0\mathbf{B}_0. We find that the helicity of quasi-parallel fluctuations is consistent with Alfv\'en-ion cyclotron and fast magnetosonic-whistler modes driven by proton temperature anisotropy instabilities and the presence of a relative drift between α\alpha-particles and protons. We also find that the helicity of oblique fluctuations has little dependence on proton temperature anisotropy and is consistent with fluctuations from the anisotropic turbulent cascade. Our results show that parallel-propagating fluctuations at proton-kinetic scales in the solar wind are dominated by proton temperature anisotropy instabilities and not the turbulent cascade. We also provide evidence that the behaviour of fluctuations at these scales is independent of the origin and macroscopic properties of the solar wind.Comment: Accepted for publication in ApJL. 6 Pages, 3 figures, 1 tabl

    The Role of Proton-Cyclotron Resonance as a Dissipation Mechanism in Solar Wind Turbulence: A Statistical Study at Ion-Kinetic Scales

    Get PDF
    We use magnetic field and ion moment data from the MFI and SWE instruments onboard the Wind spacecraft to study the nature of solar wind turbulence at ion-kinetic scales. We analyze the spectral properties of magnetic field fluctuations between 0.1 and 5.5 Hz over 2012 using an automated routine, computing high-resolution 92 s power and magnetic helicity spectra. To ensure the spectral features are physical, we make the first in-flight measurement of the MFI `noise-floor' using tail-lobe crossings of the Earth's magnetosphere during early 2004. We utilize Taylor's hypothesis to Doppler-shift into the spacecraft frequency frame, finding that the spectral break observed at these frequencies is best associated with the proton-cyclotron resonance scale, 1/kc1/k_c, compared to the proton inertial length did_i and proton gyroscale ρi\rho_i. This agreement is strongest when we consider periods where βi,1\beta_{i,\perp}\sim1, and is consistent with a spectral break at did_i for βi,1\beta_{i,\perp}\ll1 and ρi\rho_i for βi,1\beta_{i,\perp}\gg1. We also find that the coherent magnetic helicity signature observed at these frequencies is bounded at low frequencies by 1/kc1/k_c and its absolute value reaches a maximum at ρi\rho_i. These results hold in both slow and fast wind streams, but with a better correlation in the more Alfv\'enic fast wind where the helicity signature is strongest. We conclude that these findings are consistent with proton-cyclotron resonance as an important mechanism for dissipation of turbulent energy in the solar wind, occurring at least half the time in our selected interval. However, we do not rule out additional mechanisms.Comment: 16 pages, 11 figures. Accepted for publication in The Astrophysical Journal. Please contact authors to obtain WIND MFI 'noise-floor' for use in other studie

    Shrub establishment favoured and grass dominance reduced in acid heath grassland systems cleared of invasive Rhododendron ponticum

    Get PDF
    Abstract Rhododendron ponticum L. is a damaging invasive alien species in Britain, favouring the moist, temperate climate, and the acidic soils of upland areas. It outshades other species and is thought to create a soil environment of low pH that may be higher in phytotoxic phenolic compounds. We investigated native vegetation restoration and R. ponticum regeneration post-clearance using heathland sites within Snowdonia National Park, Wales; one site had existing R. ponticum stands and three were restoring post-clearance. Each site also had an adjacent, uninvaded control for comparison. We assessed whether native vegetation restoration was influenced post-invasion by soil chemical properties, including pH and phytotoxic compounds, using Lactuca sativa L. (lettuce) bioassays supported by liquid chromatography-mass spectroscopy (LC-MSn). Cleared sites had higher shrub and bare ground cover, and lower grass and herbaceous species cover relative to adjacent uninvaded control sites; regenerating R. ponticum was also observed on all cleared sites. No phenolic compounds associated with R. ponticum were identified in any soil water leachates, and soil leachates from cleared sites had no inhibitory effect in L. sativa germination assays. We therefore conclude that reportedly phytotoxic compounds do not influence restoration post R. ponticum clearance. Soil pH however was lower beneath R. ponticum and on cleared sites, relative to adjacent uninvaded sites. The lower soil pH post-clearance may have favoured shrub species, which are typically tolerant of acidic soils. The higher shrub cover on cleared sites may have greater ecological value than unaffected grass dominated sites, particularly given the recent decline in such valuable heathland habitats. The presence of regenerating R. ponticum on all cleared sites however highlights the critical importance of monitoring and re-treating sites post initial clearance

    Multiscale modelling of vascular tumour growth in 3D: the roles of domain size & boundary condition

    Get PDF
    We investigate a three-dimensional multiscale model of vascular tumour growth, which couples blood flow, angiogenesis, vascular remodelling, nutrient/growth factor transport, movement of, and interactions between, normal and tumour cells, and nutrient-dependent cell cycle dynamics within each cell. In particular, we determine how the domain size, aspect ratio and initial vascular network influence the tumour's growth dynamics and its long-time composition. We establish whether it is possible to extrapolate simulation results obtained for small domains to larger ones, by constructing a large simulation domain from a number of identical subdomains, each subsystem initially comprising two parallel parent vessels, with associated cells and diffusible substances. We find that the subsystem is not representative of the full domain and conclude that, for this initial vessel geometry, interactions between adjacent subsystems contribute to the overall growth dynamics. We then show that extrapolation of results from a small subdomain to a larger domain can only be made if the subdomain is sufficiently large and is initialised with a sufficiently complex vascular network. Motivated by these results, we perform simulations to investigate the tumour's response to therapy and show that the probability of tumour elimination in a larger domain can be extrapolated from simulation results on a smaller domain. Finally, we demonstrate how our model may be combined with experimental data, to predict the spatio-temporal evolution of a vascular tumour

    Parametrizations of Inclusive Cross Sections for Pion Production in Proton-Proton Collisions

    Full text link
    Accurate knowledge of cross sections for pion production in proton-proton collisions finds wide application in particle physics, astrophysics, cosmic ray physics and space radiation problems, especially in situations where an incident proton is transported through some medium, and one requires knowledge of the output particle spectrum given the input spectrum. In such cases accurate parametrizations of the cross sections are desired. In this paper we review much of the experimental data and compare to a wide variety of different cross section parametrizations. In so doing, we provide parametrizations of neutral and charged pion cross sections which provide a very accurate description of the experimental data. Lorentz invariant differential cross sections, spectral distributions and total cross section parametrizations are presented.Comment: 32 pages with 15 figures. Published in Physical Review D62, 094030. File includes 6 tex files. The main file is paper.tex which has include statements refering to the rest. figures are in graphs.di

    Switchbacks, microstreams, and broadband turbulence in the solar wind

    Get PDF
    Switchbacks are a striking phenomenon in near-Sun coronal hole flows, but their origins, evolution, and relation to the broadband fluctuations seen farther from the Sun are unclear. We use the near-radial lineup of Solar Orbiter and Parker Solar Probe during September 2020 when both spacecraft were in wind from the Sun's Southern polar coronal hole to investigate if switchback variability is related to large scale properties near 1 au. Using the measured solar wind speed, we map measurements from both spacecraft to the source surface and consider variations with source Carrington longitude. The patch modulation of switchback amplitudes at Parker at 20 solar radii was associated with speed variations similar to microstreams and corresponds to solar longitudinal scales of around 5°–10°. Near 1 au, this speed variation was absent, probably due to interactions between plasma at different speeds during their propagation. The alpha particle fraction, which has recently been shown to have spatial variability correlated with patches at 20 solar radii, varied on a similar scale at 1 au. The switchback modulation scale of 5°–10°, corresponding to a temporal scale of several hours at Orbiter, was present as a variation in the average deflection of the field from the Parker spiral. While limited to only one stream, these results suggest that in coronal hole flows, switchback patches are related to microstreams, perhaps associated with supergranular boundaries or plumes. Patches of switchbacks appear to evolve into large scale fluctuations, which might be one driver of the ubiquitous turbulent fluctuations in the solar wind

    Language matters. Addressing the use of language in the care of people with diabetes: position statement of the English Advisory Group

    Get PDF
    The language used by healthcare professionals can have a profound impact on how people living with diabetes, and those who care for them, experience their condition and feel about living with it day-to-day. At its best, good use of language, both verbal and written, can lower anxiety, build confidence, educate and help to improve self-care. Conversely, poor communication can be stigmatizing, hurtful and undermining of self-care and can have a detrimental effect on clinical outcomes. The language used in the care of those with diabetes has the power to reinforce negative stereotypes, but it also has the power to promote positive ones. The use of language is controversial and has many perspectives. The development of this position statement aimed to take account of these as well as the current evidence base. A working group, representing people with diabetes and key organizations with an interest in the care of people with diabetes, was established to review the use of language. The work of this group has culminated in this position statement for England. It follows the contribution of Australia and the USA to this important international debate. The group has set out practical examples of language that will encourage positive interactions with those living with diabetes and subsequently promote positive outcomes. These examples are based on a review of the evidence and are supported by a simple set of principles
    corecore