3,352 research outputs found

    Implementation of quantum algorithms with resonant interactions

    Full text link
    We propose a scheme for implementing quantum algorithms with resonant interactions. Our scheme only requires resonant interactions between two atoms and a cavity mode, which is simple and feasible. Moreover, the implementation would be an important step towards the fabrication of quantum computers in cavity QED system.Comment: 4 pages, 3 figure

    From insulator to quantum Hall liquid at low magnetic fields

    Full text link
    We have performed low-temperature transport measurements on a GaAs two-dimensional electron system at low magnetic fields. Multiple temperature-independent points and accompanying oscillations are observed in the longitudinal resistivity between the low-field insulator and the quantum Hall (QH) liquid. Our results support the existence of an intermediate regime, where the amplitudes of magneto-oscillations can be well described by conventional Shubnikov-de Haas theory, between the low-field insulator and QH liquid.Comment: Magneto-oscillations governed by Shubnikov-de Haas theory are observed between the low-field insulator and quantum Hall liqui

    Kinetic energy driven superconductivity in the electron doped cobaltate Nax_{x}CoO2⋅y_{2}\cdot yH2_{2}O

    Full text link
    Within the charge-spin separation fermion-spin theory, we have shown that the mechanism of superconductivity in the electron doped cobaltate Nax_{x}CoO2⋅y_{2}\cdot yH2_{2}O is ascribed to its kinetic energy. The dressed fermions interact occurring directly through the kinetic energy by exchanging magnetic excitations. This interaction leads to a net attractive force between dressed fermions, then the electron Cooper pairs originating from the dressed fermion pairing state are due to the charge-spin recombination, and their condensation reveals the superconducting ground state. The superconducting transition temperature is identical to the dressed fermion pair transition temperature, and is suppressed to a lower temperature due to the strong magnetic frustration. The optimal superconducting transition temperature occurs in the electron doping concentration ή≈0.29\delta\approx 0.29, and then decreases for both underdoped and overdoped regimes, in qualitative agreement with the experimental results.Comment: 6 pages, 2 figs, corrected typos, accepted for publication in Commun. Theor. Phy

    Non-Abelian Collective Excitations in Unlinearized Quark-Gluon Plasma Media

    Get PDF
    We study the effect of unlinearized medium on the collective excitations in quark-gluon plasma. We present two kinds of non-Abelian oscillation solutions which respectively correspond to weakly and strongly nonlinear coupling of field components in color space. We also show that the weakly nonlinear solution is similar to Abelian-like one but has the frequency shift, which is of order g2Tg^2T, from eigenfrequency.Comment: 7 page

    Necessary And Sufficient Condition of Separability of Any System

    Full text link
    The necessary and sufficient condition of separability of a mixed state of any systems is presented, which is practical in judging the separability of a mixed state. This paper also presents a method of finding the disentangled decomposition of a separable mixed state.Comment: RevTeX, 5 pages including 1 figure, to appear in Phys. Rev.

    Efficient quantum cryptography network without entanglement and quantum memory

    Full text link
    An efficient quantum cryptography network protocol is proposed with d-dimension polarized photons, without resorting to entanglement and quantum memory. A server on the network, say Alice, provides the service for preparing and measuring single photons whose initial state are |0>. The users code the information on the single photons with some unitary operations. For preventing the untrustworthy server Alice from eavesdropping the quantum lines, a nonorthogonal-coding technique (decoy-photon technique) is used in the process that the quantum signal is transmitted between the users. This protocol does not require the servers and the users to store the quantum state and almost all of the single photons can be used for carrying the information, which makes it more convenient for application than others with present technology. We also discuss the case with a faint laser pulse.Comment: 4 pages, 1 figures. It also presented a way for preparing decoy photons without a sinigle-photon sourc

    Structure optimization in an off-lattice protein model

    Full text link
    We study an off-lattice protein toy model with two species of monomers interacting through modified Lennard-Jones interactions. Low energy configurations are optimized using the pruned-enriched-Rosenbluth method (PERM), hitherto employed to native state searches only for off lattice models. For 2 dimensions we found states with lower energy than previously proposed putative ground states, for all chain lengths ≄13\ge 13. This indicates that PERM has the potential to produce native states also for more realistic protein models. For d=3d=3, where no published ground states exist, we present some putative lowest energy states for future comparison with other methods.Comment: 4 pages, 2 figure

    Colony-forming cells in the adult mouse pancreas are expandable in Matrigel and form endocrine/acinar colonies in laminin hydrogel

    Get PDF
    The study of hematopoietic colony-forming units using semisolid culture media has greatly advanced the knowledge of hematopoiesis. Here we report that similar methods can be used to study pancreatic colony-forming units. We have developed two pancreatic colony assays that enable quantitative and functional analyses of progenitor-like cells isolated from dissociated adult (2–4 mo old) murine pancreas. We find that a methylcellulose-based semisolid medium containing Matrigel allows growth of duct-like “Ring/Dense” colonies from a rare (∌1%) population of total pancreatic single cells. With the addition of roof plate-specific spondin 1, a wingless-int agonist, Ring/Dense colony-forming cells can be expanded more than 100,000-fold when serially dissociated and replated in the presence of Matrigel. When cells grown in Matrigel are then transferred to a Matrigel-free semisolid medium with a unique laminin-based hydrogel, some cells grow and differentiate into another type of colony, which we name “Endocrine/Acinar.” These Endocrine/Acinar colonies are comprised mostly of endocrine- and acinar-like cells, as ascertained by RNA expression analysis, immunohistochemistry, and electron microscopy. Most Endocrine/Acinar colonies contain beta-like cells that secrete insulin/C-peptide in response to D-glucose and theophylline. These results demonstrate robust self-renewal and differentiation of adult Ring/Dense colony-forming units in vitro and suggest an approach to producing beta-like cells for cell replacement of type 1 diabetes. The methods described, which include microfluidic expression analysis of single cells and colonies, should also advance study of pancreas development and pancreatic progenitor cells
    • 

    corecore