2 research outputs found
Plasma HDL cholesterol and risk of myocardial infarction: a mendelian randomisation study
Background High plasma HDL cholesterol is associated with reduced risk of myocardial infarction, but whether this
association is causal is unclear. Exploiting the fact that genotypes are randomly assigned at meiosis, are independent
of non-genetic confounding, and are unmodifi ed by disease processes, mendelian random isation can be used to test
the hypothesis that the association of a plasma biomarker with disease is causal.
Methods We performed two mendelian randomisation analyses. First, we used as an instrument a single nucleotide
polymorphism (SNP) in the endothelial lipase gene (LIPG Asn396Ser) and tested this SNP in 20 studies
(20 913 myocardial infarction cases, 95 407 controls). Second, we used as an instrument a genetic score consisting of
14 common SNPs that exclusively associate with HDL cholesterol and tested this score in up to 12 482 cases of
myocardial infarction and 41 331 controls. As a positive control, we also tested a genetic score of 13 common SNPs
exclusively associated with LDL cholesterol.
Findings Carriers of the LIPG 396Ser allele (2·6% frequency) had higher HDL cholesterol (0·14 mmol/L higher,
p=8Ă10â
ÂčÂł) but similar levels of other lipid and non-lipid risk factors for myocardial infarction compared with noncarriers.
This diff erence in HDL cholesterol is expected to decrease risk of myocardial infarction by 13% (odds ratio
[OR] 0·87, 95% CI 0·84â0·91). However, we noted that the 396Ser allele was not associated with risk of myocardial
infarction (OR 0·99, 95% CI 0·88â1·11, p=0·85). From observational epidemiology, an increase of 1 SD in HDL
cholesterol was associated with reduced risk of myocardial infarction (OR 0·62, 95% CI 0·58â0·66). However, a 1 SD
increase in HDL cholesterol due to genetic score was not associated with risk of myocardial infarction (OR 0·93,
95% CI 0·68â1·26, p=0·63). For LDL cholesterol, the estimate from observational epidemiology (a 1 SD increase in
LDL cholesterol associated with OR 1·54, 95% CI 1·45â1·63) was concordant with that from genetic score (OR 2·13,
95% CI 1·69â2·69, p=2Ă10â
Âčâ°).
Interpretation Some genetic mechanisms that raise plasma HDL cholesterol do not seem to lower risk of myocardial
infarction. These data challenge the concept that raising of plasma HDL cholesterol will uniformly translate into
reductions in risk of myocardial infarction.
Funding US National Institutes of Health, The Wellcome Trust, European Union, British Heart Foundation, and the
German Federal Ministry of Education and Research
Identification of a BRCA2-Specific Modifier Locus at 6p24 Related to Breast Cancer Risk
Common genetic variants contribute to the observed variation in breast cancer risk for BRCA2 mutation carriers; those known to date have all been found through population-based genome-wide association studies (GWAS). To comprehensively identify breast cancer risk modifying loci for BRCA2 mutation carriers, we conducted a deep replication of an ongoing GWAS discovery study. Using the ranked P-values of the breast cancer associations with the imputed genotype of 1.4 M SNPs, 19,029 SNPs were selected and designed for inclusion on a custom Illumina array that included a total of 211,155 SNPs as part of a multi-consortial project. DNA samples from 3,881 breast cancer affected and 4,330 unaffected BRCA2 mutation carriers from 47 studies belonging to the Consortium of Investigators of Modifiers of BRCA1/2 were genotyped and available for analysis. We replicated previously reported breast cancer susceptibility alleles in these BRCA2 mutation carriers and for several regions (including FGFR2, MAP3K1, CDKN2A/B, and PTHLH) identified SNPs that have stronger evidence of association than those previously published. We also identified a novel susceptibility allele at 6p24 that was inversely associated with risk in BRCA2 mutation carriers (rs9348512; per allele HR = 0.85, 95% CI 0.80-0.90, P = 3.9Ă10-8). This SNP was not associated with breast cancer risk either in the general population or in BRCA1 mutation carriers. The locus lies within a region containing TFAP2A, which encodes a transcriptional activation protein that interacts with several tumor suppressor genes. This report identifies the first breast cancer risk locus specific to a BRCA2 mutation background. This comprehensive update of novel and previously reported breast cancer susceptibility loci contributes to the establishment of a panel of SNPs that modify breast cancer risk in BRCA2 mutation carriers. This panel may have clinical utility for women with BRCA2 mutations weighing options for medical prevention of breast cancer