95 research outputs found

    Carbon superatom thin films

    Full text link
    Assembling clusters on surfaces has emerged as a novel way to grow thin films with targeted properties. In particular, it has been proposed from experimental findings that fullerenes deposited on surfaces could give rise to thin films retaining the bonding properties of the incident clusters. However the microscopic structure of such films is still unclear. By performing quantum molecular dynamics simulations, we show that C_28 fullerenes can be deposited on a surface to form a thin film of nearly defect free molecules, which act as carbon superatoms. Our findings help clarify the structure of disordered small fullerene films and also support the recently proposed hyperdiamond model for solid C_28.Comment: 13 pages, RevTeX, 2 figures available as black and white PostScript files; color PostScript and/or gif files available upon reques

    Home media and science performance:A cross-national study

    Get PDF
    This study examines the effects of media resources in the parental home on the science performance of 15-year-old students. It employs data from the 2006 Programme for International Student Assessment (PISA) containing information on 345,967 respondents from 53 countries. Results show that media assets in the family home are indeed meaningful for children’s science performance, as a beneficial resource but also as a disadvantage. A positive reading climate in the parental home and the availability of computers benefits science performance. However, a television-rich home seems to hinder children’s school success. Furthermore, results indicate that, compared to less developed countries, in more modernized societies parental reading investments are even more beneficial to their children’s science performance, whereas a television-rich parental home is even more disadvantageous

    The Structure of Values

    No full text

    Amorphous thin films for solar-cell applications. Final report, September 11, 1978-September 10, 1979

    No full text
    In Section II, Theoretical Modeling, theories for the capture of electrons by deep centers in hydrogenated amorphous silicon (a-Si:H) and for field-dependent quantum efficiency in a-Si:H are presented. In Section III, Deposition and Doping Studies, the optimization of phosphorus-doped a-Si:H carried out in four different discharge systems is described. Some details of the dc proximity and rf magnetron discharge systems are also provided. Preliminary mass spectroscopy studies of the rf magnetron discharge in both SiH/sub 4/ and SiF/sub 4/ are presented. In Section IV, Experimental Methods for Characterizing a-Si:H, recent work involving photoluminescence of fluorine-doped a-Si:H, photoconductivity spectra, the photoelectromagnetic effect, the photo-Hall effect and tunneling into a-Si:H is presented. Also, studies of the growth mechanism of Pt adsorbed on both crystalline Si and a-Si:H are described. Measurements of the surface photovoltage have been used to estimate the distribution of surface states of phosphorus-doped and undoped a-Si:H. Section V, Formation of Solar-Cell Structures, contains information on stacked or multiple-junction a-Si:H solar cells. In Section VI, Theoretical and Experimental Evaluation of Solar-Cell Parameters, an upper limit of approx. = 400 A is established for the hole diffusion length in undoped a-Si:H. A detailed description of carrier generation, recombination and transport in a-Si:H solar cells is given. Finally, some characteristics of Pd-Schottky-barrier cells are described for different processing histories
    • …
    corecore