51 research outputs found

    Demonstration of the spatial separation of the entangled quantum side-bands of an optical field

    Get PDF
    Quantum optics experiments on "bright" beams typically probe correlations between side-band modes. However the extra degree of freedom represented by this dual mode picture is generally ignored. We demonstrate the experimental operation of a device which can be used to separate the quantum side-bands of an optical field. We use this device to explicitly demonstrate the quantum entanglement between the side-bands of a squeezed beam

    Photogalvanic current in artificial asymmetric nanostructures

    Full text link
    We develop a theoretic description of the photogalvanic current induced by a high frequency radiation in asymmetric nanostructures and show that it describes well the results of numerical simulations. Our studies allow to understand the origin of the electronic ratchet transport in such systems and show that they can be used for creation of new types of detectors operating at room temperature in a terahertz radiation range.Comment: 11 pages, 9 figs, EPJ latex styl

    Micro-econometric and Micro-Macro Linked Models: Sequential Macro-Micro Modelling with Behavioral Microsimulations

    Get PDF
    Analyzing the poverty and distributional impact of macro events requires understanding how shocks or policy changes on the macro level affect household income and consumption. It is clear that this poses a formidable task, which of course raises the question of the appropriate methodology to address such questions. This paper presents one possible approach: A sequential methodology that combines a macroeconomic model with a behavioral micro-simulation. We discuss the merits and shortcomings of this approach with a focus on developing country applications with a short to medium run time horizon. - This chapter is a re-print of: Lay, J. (2010). Sequential macro-micro modelling with behavioural microsimulations. International Journal of Microsimulation, 3(1), 24-34

    Efficiency optimization in a correlation ratchet with asymmetric unbiased fluctuations

    Full text link
    The efficiency of a Brownian particle moving in periodic potential in the presence of asymmetric unbiased fluctuations is investigated. We found that there is a regime where the efficiency can be a peaked function of temperature, which proves that thermal fluctuations facilitate the efficiency of energy transformation, contradicting the earlier findings (H. kamegawa et al. Phys. Rev. Lett. 80 (1998) 5251). It is also found that the mutual interplay between asymmetry of fluctuation and asymmetry of the potential may induce optimized efficiency at finite temperature. The ratchet is not most efficiency when it gives maximum current.Comment: 10 pages, 7 figure

    Rectification and Phase Locking for Particles on Two Dimensional Periodic Substrates

    Full text link
    We show that a novel rectification phenomena is possible for overdamped particles interacting with a 2D periodic substrate and driven with a longitudinal DC drive and a circular AC drive. As a function of DC amplitude, the longitudinal velocity increases in a series of quantized steps with transverse rectification occuring near these transitions. We present a simple model that captures the quantization and rectification behaviors.Comment: 4 pages, 4 postscript figure

    Axion-like-particle search with high-intensity lasers

    Full text link
    We study ALP-photon-conversion within strong inhomogeneous electromagnetic fields as provided by contemporary high-intensity laser systems. We observe that probe photons traversing the focal spot of a superposition of Gaussian beams of a single high-intensity laser at fundamental and frequency-doubled mode can experience a frequency shift due to their intermittent propagation as axion-like-particles. This process is strongly peaked for resonant masses on the order of the involved laser frequencies. Purely laser-based experiments in optical setups are sensitive to ALPs in the eV\mathrm{eV} mass range and can thus complement ALP searches at dipole magnets.Comment: 25 pages, 2 figure

    Molecular motor that never steps backwards

    Full text link
    We investigate the dynamics of a classical particle in a one-dimensional two-wave potential composed of two periodic potentials, that are time-independent and of the same amplitude and periodicity. One of the periodic potentials is externally driven and performs a translational motion with respect to the other. It is shown that if one of the potentials is of the ratchet type, translation of the potential in a given direction leads to motion of the particle in the same direction, whereas translation in the opposite direction leaves the particle localized at its original location. Moreover, even if the translation is random, but still has a finite velocity, an efficient directed transport of the particle occurs.Comment: 4 pages, 5 figures, Phys. Rev. Lett. (in print

    Disorder Induced Diffusive Transport In Ratchets

    Full text link
    The effects of quenched disorder on the overdamped motion of a driven particle on a periodic, asymmetric potential is studied. While for the unperturbed potential the transport is due to a regular drift, the quenched disorder induces a significant additional chaotic ``diffusive'' motion. The spatio-temporal evolution of the statistical ensemble is well described by a Gaussian distribution, implying a chaotic transport in the presence of quenched disorder.Comment: 10 pages, 4 EPS figures; submitted to Phys. Rev. Letter

    Probing For New Physics and Detecting non linear vacuum QED effects using gravitational wave interferometer antennas

    Get PDF
    Low energy non linear QED effects in vacuum have been predicted since 1936 and have been subject of research for many decades. Two main schemes have been proposed for such a 'first' detection: measurements of ellipticity acquired by a linearly polarized beam of light passing through a magnetic field and direct light-light scattering. The study of the propagation of light through an external field can also be used to probe for new physics such as the existence of axion-like particles and millicharged particles. Their existence in nature would cause the index of refraction of vacuum to be different from unity in the presence of an external field and dependent of the polarization direction of the light propagating. The major achievement of reaching the project sensitivities in gravitational wave interferometers such as LIGO an VIRGO has opened the possibility of using such instruments for the detection of QED corrections in electrodynamics and for probing new physics at very low energies. In this paper we discuss the difference between direct birefringence measurements and index of refraction measurements. We propose an almost parasitic implementation of an external magnetic field along the arms of the VIRGO interferometer and discuss the advantage of this choice in comparison to a previously proposed configuration based on shorter prototype interferometers which we believe is inadequate. Considering the design sensitivity in the strain, for the near future VIRGO+ interferometer, of h<210231Hzh<2\cdot10^{-23} \frac{1}{\sqrt{\rm Hz}} in the range 40 Hz 400- 400 Hz leads to a variable dipole magnet configuration at a frequency above 20 Hz such that B2D13000B^{2}D \ge 13000 T2^{2}m/Hz\sqrt{\rm Hz} for a `first' vacuum non linear QED detection

    Polarization state of the optical near-field

    Full text link
    The polarization state of the optical electromagnetic field lying several nanometers above complex dielectric structures reveals the intricate light-matter interaction that occurs in this near-field zone. This information can only be extracted from an analysis of the polarization state of the detected light in the near-field. These polarization states can be calculated by different numerical methods well-suited to near--field optics. In this paper, we apply two different techniques (Localized Green Function Method and Differential Theory of Gratings) to separate each polarisation component associated with both electric and magnetic optical near-fields produced by nanometer sized objects. The analysis is carried out in two stages: in the first stage, we use a simple dipolar model to achieve insight into the physical origin of the near-field polarization state. In the second stage, we calculate accurate numerical field maps, simulating experimental near-field light detection, to supplement the data produced by analytical models. We conclude this study by demonstrating the role played by the near-field polarization in the formation of the local density of states.Comment: 9 pages, 11 figures, accepted for publication in Phys. Rev.
    corecore