3,826 research outputs found

    Ray-based calculations of backscatter in laser fusion targets

    Full text link
    A 1D, steady-state model for Brillouin and Raman backscatter from an inhomogeneous plasma is presented. The daughter plasma waves are treated in the strong damping limit, and have amplitudes given by the (linear) kinetic response to the ponderomotive drive. Pump depletion, inverse-bremsstrahlung damping, bremsstrahlung emission, Thomson scattering off density fluctuations, and whole-beam focusing are included. The numerical code DEPLETE, which implements this model, is described. The model is compared with traditional linear gain calculations, as well as "plane-wave" simulations with the paraxial propagation code pF3D. Comparisons with Brillouin-scattering experiments at the OMEGA Laser Facility [T. R. Boehly et al., Opt. Commun. 133, p. 495 (1997)] show that laser speckles greatly enhance the reflectivity over the DEPLETE results. An approximate upper bound on this enhancement, motivated by phase conjugation, is given by doubling the DEPLETE coupling coefficient. Analysis with DEPLETE of an ignition design for the National Ignition Facility (NIF) [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technol. 26, p. 755 (1994)], with a peak radiation temperature of 285 eV, shows encouragingly low reflectivity. Re-absorption of Raman light is seen to be significant in this design.Comment: 16 pages, 19 figure

    Suboptimal health: a new health dimension for translational medicine

    Get PDF
    Background One critical premise of disease-related biomarkers is the definition of the counterpart normality. Contrary to pre-clinical models that can be carefully tailored according to scientific need, heterogeneity and uncontrollability is the essence of humans in health studies. Fully characterization of consistent parameters that define the normal population is the basis to individual differences normalization irrelevant to a given disease process. Self claimed normal status may not represent health because asymptomatic subjects may carry chronic diseases or diseases at their early stage such as cancer, diabetes and hypertension. Methods This paper exemplifies the characterization of the suboptimal health status (SHS) which represents a new public health problem in a population with ambiguous health complaints such as general weakness, unexplained medical syndrome and chronic fatigue. We applied clinical informatics approaches and developed a questionnaire for measuring SHS. The validity and reliability of this approach were evaluated in a small pilot study and then in a cross-sectional study of 3,405 individuals. Results The final questionnaire congregated into a score (SHSQ-25) which could significantly distinguish among several abnormal conditions. Conclusion SHSQ-25 could be used as a translational medicine instrument for health measuring in the general population

    A well-separated pairs decomposition algorithm for k-d trees implemented on multi-core architectures

    Get PDF
    Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.Variations of k-d trees represent a fundamental data structure used in Computational Geometry with numerous applications in science. For example particle track tting in the software of the LHC experiments, and in simulations of N-body systems in the study of dynamics of interacting galaxies, particle beam physics, and molecular dynamics in biochemistry. The many-body tree methods devised by Barnes and Hutt in the 1980s and the Fast Multipole Method introduced in 1987 by Greengard and Rokhlin use variants of k-d trees to reduce the computation time upper bounds to O(n log n) and even O(n) from O(n2). We present an algorithm that uses the principle of well-separated pairs decomposition to always produce compressed trees in O(n log n) work. We present and evaluate parallel implementations for the algorithm that can take advantage of multi-core architectures.The Science and Technology Facilities Council, UK
    corecore