3,983 research outputs found

    Stein factors for negative binomial approximation in Wasserstein distance

    Full text link
    The paper gives the bounds on the solutions to a Stein equation for the negative binomial distribution that are needed for approximation in terms of the Wasserstein metric. The proofs are probabilistic, and follow the approach introduced in Barbour and Xia (Bernoulli 12 (2006) 943-954). The bounds are used to quantify the accuracy of negative binomial approximation to parasite counts in hosts. Since the infectivity of a population can be expected to be proportional to its total parasite burden, the Wasserstein metric is the appropriate choice.Comment: Published at http://dx.doi.org/10.3150/14-BEJ595 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    The geometry of the Barbour-Bertotti theories I. The reduction process

    Get PDF
    The dynamics of N3N\geq 3 interacting particles is investigated in the non-relativistic context of the Barbour-Bertotti theories. The reduction process on this constrained system yields a Lagrangian in the form of a Riemannian line element. The involved metric, degenerate in the flat configuration space, is the first fundamental form of the space of orbits of translations and rotations (the Leibniz group). The Riemann tensor and the scalar curvature are computed by a generalized Gauss formula in terms of the vorticity tensors of generators of the rotations. The curvature scalar is further given in terms of the principal moments of inertia of the system. Line configurations are singular for N3N\neq 3. A comparison with similar methods in molecular dynamics is traced.Comment: 15 pages, to appear in Classical and Quantum Gravit

    Hydrographic data from R/V endeavor cruise #90

    Get PDF
    The final cruise of the NSF sponsored Warm Core Rings Program studied a Warm Core Ring (WCR) in the Fall of 1982 as it formed from a large northward meander of the Gulf Stream. This ring, known as 82-H or the eighth ring identified in 1982, formed over the New England Seamounts near 39.5 deg N, 65 deg W. Surveys using Expendable Bathythermographs, Conductivity-Temperature-Depth-Oxygen stations and Doppler Current Profiling provide a look at the genesis of a WCR. These measurements reveal that WCR 82-H separated from the Gulf Stream sometime between October 2-5. This ring was a typical WCR with a diameter of about 200 km and speeds in the high velocity core of the 175 cm/sec. Satellite imagery of 82-H following the cruise showed that it drifted WSW in the Slope Water region at almost 9 km/day, had at least one interaction with the Gulf Stream and was last observed on February 8, 1983 at 39 deg N, 72 deg W

    Poisson approximations for the Ising model

    Full text link
    A dd-dimensional Ising model on a lattice torus is considered. As the size nn of the lattice tends to infinity, a Poisson approximation is given for the distribution of the number of copies in the lattice of any given local configuration, provided the magnetic field a=a(n)a=a(n) tends to -\infty and the pair potential bb remains fixed. Using the Stein-Chen method, a bound is given for the total variation error in the ferromagnetic case.Comment: 25 pages, 1 figur

    A law of large numbers approximation for Markov population processes with countably many types

    Full text link
    When modelling metapopulation dynamics, the influence of a single patch on the metapopulation depends on the number of individuals in the patch. Since the population size has no natural upper limit, this leads to systems in which there are countably infinitely many possible types of individual. Analogous considerations apply in the transmission of parasitic diseases. In this paper, we prove a law of large numbers for rather general systems of this kind, together with a rather sharp bound on the rate of convergence in an appropriately chosen weighted 1\ell_1 norm.Comment: revised version in response to referee comments, 34 page

    The Definition of Mach's Principle

    Full text link
    Two definitions of Mach's principle are proposed. Both are related to gauge theory, are universal in scope and amount to formulations of causality that take into account the relational nature of position, time, and size. One of them leads directly to general relativity and may have relevance to the problem of creating a quantum theory of gravity.Comment: To be published in Foundations of Physics as invited contribution to Peter Mittelstaedt's 80th Birthday Festschrift. 30 page

    New interpretation of variational principles for gauge theories. I. Cyclic coordinate alternative to ADM split

    Full text link
    I show how there is an ambiguity in how one treats auxiliary variables in gauge theories including general relativity cast as 3 + 1 geometrodynamics. Auxiliary variables may be treated pre-variationally as multiplier coordinates or as the velocities corresponding to cyclic coordinates. The latter treatment works through the physical meaninglessness of auxiliary variables' values applying also to the end points (or end spatial hypersurfaces) of the variation, so that these are free rather than fixed. [This is also known as variation with natural boundary conditions.] Further principles of dynamics workings such as Routhian reduction and the Dirac procedure are shown to have parallel counterparts for this new formalism. One advantage of the new scheme is that the corresponding actions are more manifestly relational. While the electric potential is usually regarded as a multiplier coordinate and Arnowitt, Deser and Misner have regarded the lapse and shift likewise, this paper's scheme considers new {\it flux}, {\it instant} and {\it grid} variables whose corresponding velocities are, respectively, the abovementioned previously used variables. This paper's way of thinking about gauge theory furthermore admits interesting generalizations, which shall be provided in a second paper.Comment: 11 page

    Emergent Semiclassical Time in Quantum Gravity. I. Mechanical Models

    Get PDF
    Strategies intended to resolve the problem of time in quantum gravity by means of emergent or hidden timefunctions are considered in the arena of relational particle toy models. In situations with `heavy' and `light' degrees of freedom, two notions of emergent semiclassical WKB time emerge; these are furthermore equivalent to two notions of emergent classical `Leibniz--Mach--Barbour' time. I futhermore study the semiclassical approach, in a geometric phase formalism, extended to include linear constraints, and with particular care to make explicit those approximations and assumptions used. I propose a new iterative scheme for this in the cosmologically-motivated case with one heavy degree of freedom. I find that the usual semiclassical quantum cosmology emergence of time comes hand in hand with the emergence of other qualitatively significant terms, including back-reactions on the heavy subsystem and second time derivatives. I illustrate my analysis by taking it further for relational particle models with linearly-coupled harmonic oscillator potentials. As these examples are exactly soluble by means outside the semiclassical approach, they are additionally useful for testing the justifiability of some of the approximations and assumptions habitually made in the semiclassical approach to quantum cosmology. Finally, I contrast the emergent semiclassical timefunction with its hidden dilational Euler time counterpart.Comment: References Update

    Foundations of Relational Particle Dynamics

    Full text link
    Relational particle dynamics include the dynamics of pure shape and cases in which absolute scale or absolute rotation are additionally meaningful. These are interesting as regards the absolute versus relative motion debate as well as discussion of conceptual issues connected with the problem of time in quantum gravity. In spatial dimension 1 and 2 the relative configuration spaces of shapes are n-spheres and complex projective spaces, from which knowledge I construct natural mechanics on these spaces. I also show that these coincide with Barbour's indirectly-constructed relational dynamics by performing a full reduction on the latter. Then the identification of the configuration spaces as n-spheres and complex projective spaces, for which spaces much mathematics is available, significantly advances the understanding of Barbour's relational theory in spatial dimensions 1 and 2. I also provide the parallel study of a new theory for which positon and scale are purely relative but orientation is absolute. The configuration space for this is an n-sphere regardless of the spatial dimension, which renders this theory a more tractable arena for investigation of implications of scale invariance than Barbour's theory itself.Comment: Minor typos corrected; references update

    Quenched QCD at finite density

    Full text link
    Simulations of quenched QCDQCD at relatively small but {\it nonzero} chemical potential μ\mu on 32×16332 \times 16^3 lattices indicate that the nucleon screening mass decreases linearly as μ\mu increases predicting a critical chemical potential of one third the nucleon mass, mN/3m_N/3, by extrapolation. The meson spectrum does not change as μ\mu increases over the same range, from zero to mπ/2m_\pi/2. Past studies of quenched lattice QCD have suggested that there is phase transition at μ=mπ/2\mu = m_\pi/2. We provide alternative explanations for these results, and find a number of technical reasons why standard lattice simulation techniques suffer from greatly enhanced fluctuations and finite size effects for μ\mu ranging from mπ/2m_\pi/2 to mN/3m_N/3. We find evidence for such problems in our simulations, and suggest that they can be surmounted by improved measurement techniques.Comment: 23 pages, Revte
    corecore