4,832 research outputs found
Error threshold in the evolution of diploid organisms
The effects of error propagation in the reproduction of diploid organisms are
studied within the populational genetics framework of the quasispecies model.
The dependence of the error threshold on the dominance parameter is fully
investigated. In particular, it is shown that dominance can protect the
wild-type alleles from the error catastrophe. The analysis is restricted to a
diploid analogue of the single-peaked landscape.Comment: 9 pages, 4 Postscript figures. Submitted to J. Phy. A: Mat. and Ge
The roles of \u3ci\u3ecis\u3c/i\u3e- and \u3ci\u3etrans\u3c/i\u3e-regulation in the evolution of regulatory incompatibilities and sexually dimorphic gene expression
Evolutionary changes in gene expression underlie many aspects of phenotypic diversity within and among species. Understanding the genetic basis for evolved changes in gene expression is therefore an important component of a comprehensive understanding of the genetic basis of phenotypic evolution. Using interspecific introgression hybrids, we examined the genetic basis for divergence in genome-wide patterns of gene expression between Drosophila simulans and Drosophila mauritiana. We find that cis-regulatory and trans-regulatory divergences differ significantly in patterns of genetic architecture and evolution. The effects of cis-regulatory divergence are approximately additive in heterozygotes, quantitatively different between males and females, and well predicted by expression differences between the two parental species. In contrast, the effects of trans-regulatory divergence are associated with largely dominant introgressed alleles, have similar effects in the two sexes, and generate expression levels in hybrids outside the range of expression in both parental species. Although the effects of introgressed trans-regulatory alleles are similar in males and females, expression levels of the genes they regulate are sexually dimorphic between the parental D. simulans and D. mauritiana strains, suggesting that purespecies genotypes carry unlinked modifier alleles that increase sexual dimorphism in expression. Our results suggest that independent effects of cis-regulatory substitutions in males and females may favor their role in the evolution of sexually dimorphic phenotypes, and that trans-regulatory divergence is an important source of regulatory incompatibilities
General-Relativistic Curvature of Pulsar Vortex Structure
The motion of a neutron superfluid condensate in a pulsar is studied. Several
theorems of general-relativistic hydrodynamics are proved for a superfluid. The
average density distribution of vortex lines in pulsars and their
general-relativistic curvature are derived.Comment: 18 pages, 1 figure
Orbital evolution of a particle around a black hole: II. Comparison of contributions of spin-orbit coupling and the self force
We consider the evolution of the orbit of a spinning compact object in a
quasi-circular, planar orbit around a Schwarzschild black hole in the extreme
mass ratio limit. We compare the contributions to the orbital evolution of both
spin-orbit coupling and the local self force. Making assumptions on the
behavior of the forces, we suggest that the decay of the orbit is dominated by
radiation reaction, and that the conservative effect is typically dominated by
the spin force. We propose that a reasonable approximation for the
gravitational waveform can be obtained by ignoring the local self force, for
adjusted values of the parameters of the system. We argue that this
approximation will only introduce small errors in the astronomical
determination of these parameters.Comment: 11 pages, 7 figure
Replica symmetry breaking in an adiabatic spin-glass model of adaptive evolution
We study evolutionary canalization using a spin-glass model with replica
theory, where spins and their interactions are dynamic variables whose
configurations correspond to phenotypes and genotypes, respectively. The spins
are updated under temperature T_S, and the genotypes evolve under temperature
T_J, according to the evolutionary fitness. It is found that adaptation occurs
at T_S < T_S^{RS}, and a replica symmetric phase emerges at T_S^{RSB} < T_S <
T_S^{RS}. The replica symmetric phase implies canalization, and replica
symmetry breaking at lower temperatures indicates loss of robustness.Comment: 5pages, 2 figure
Recommended from our members
Genome-Wide Gene Expression Effects of Sex Chromosome Imprinting in Drosophila
Imprinting is well-documented in both plant and animal species. In Drosophila, the Y chromosome is differently modified when transmitted through the male and female germlines. Here, we report genome-wide gene expression effects resulting from reversed parent-of-origin of the X and Y chromosomes. We found that hundreds of genes are differentially expressed between adult male Drosophila melanogaster that differ in the maternal and paternal origin of the sex chromosomes. Many of the differentially regulated genes are expressed specifically in testis and midgut cells, suggesting that sex chromosome imprinting might globally impact gene expression in these tissues. In contrast, we observed much fewer Y-linked parent-of-origin effects on genome-wide gene expression in females carrying a Y chromosome, indicating that gene expression in females is less sensitive to sex chromosome parent-of-origin. Genes whose expression differs between females inheriting a maternal or paternal Y chromosome also show sex chromosome parent-of-origin effects in males, but the direction of the effects on gene expression (overexpression or underexpression) differ between the sexes. We suggest that passage of sex chromosome chromatin through male meiosis may be required for wild-type function in F1 progeny, whereas disruption of Y-chromosome function through passage in the female germline likely arises because the chromosome is not adapted to the female germline environment
Genome-Wide Gene Expression Effects of Sex Chromosome Imprinting in \u3ci\u3eDrosophila\u3c/i\u3e
Imprinting is well-documented in both plant and animal species. In Drosophila, the Y chromosome is differently modified when transmitted through the male and female germlines. Here, we report genome-wide gene expression effects resulting from reversed parent-of-origin of the X and Y chromosomes. We found that hundreds of genes are differentially expressed between adult male Drosophila melanogaster that differ in the maternal and paternal origin of the sex chromosomes. Many of the differentially regulated genes are expressed specifically in testis and midgut cells, suggesting that sex chromosome imprinting might globally impact gene expression in these tissues. In contrast, we observed much fewer Y-linked parent-of-origin effects on genome-wide gene expression in females carrying a Y chromosome, indicating that gene expression in females is less sensitive to sex chromosome parent-of-origin. Genes whose expression differs between females inheriting a maternal or paternal Y chromosome also show sex chromosome parent-of-origin effects in males, but the direction of the effects on gene expression (overexpression or underexpression) differ between the sexes. We suggest that passage of sex chromosome chromatin through male meiosis may be required for wild-type function in F1 progeny, whereas disruption of Y-chromosome function through passage in the female germline likely arises because the chromosome is not adapted to the female germline environment
Fokker-Planck and Landau-Lifshitz-Bloch Equations for Classical Ferromagnets
A macroscopic equation of motion for the magnetization of a ferromagnet at
elevated temperatures should contain both transverse and longitudinal
relaxation terms and interpolate between Landau-Lifshitz equation at low
temperatures and the Bloch equation at high temperatures. It is shown that for
the classical model where spin-bath interactions are described by stochastic
Langevin fields and spin-spin interactions are treated within the mean-field
approximation (MFA), such a ``Landau-Lifshitz-Bloch'' (LLB) equation can be
derived exactly from the Fokker-Planck equation, if the external conditions
change slowly enough. For weakly anisotropic ferromagnets within the MFA the
LLB equation can be written in a macroscopic form based on the free-energy
functional interpolating between the Landau free energy near T_C and the
``micromagnetic'' free energy, which neglects changes of the magnetization
magnitude |{\bf M}|, at low temperatures.Comment: 9 pages, no figures, a small error correcte
A Population Genetic Approach to the Quasispecies Model
A population genetics formulation of Eigen's molecular quasispecies model is
proposed and several simple replication landscapes are investigated
analytically. Our results show a remarcable similarity to those obtained with
the original kinetics formulation of the quasispecies model. However, due to
the simplicity of our approach, the space of the parameters that define the
model can be explored. In particular, for the simgle-sharp-peak landscape our
analysis yelds some interesting predictions such as the existence of a maximum
peak height and a mini- mum molecule length for the onset of the error
threshold transition.Comment: 16 pages, 4 Postscript figures. Submited to Phy. Rev.
- …