14 research outputs found
Recommended from our members
Influence of a perpendicular magnetic field on the thermal depinning of a single Abrikosov vortex in a superconducting Josephson junction
The prime interest of the present research is to measure the thermal energy needed for depinning a trapped vortex when an external magnetic field is perpendicular to the plane of the junction, and thus there are Meissner currents flowing along the edge of the film. These currents introduce an additional force and the author wishes to study thermal depinning under the influence of this force. These studies are of interest because Nb junctions are used in a wide range of electronic applications. Such junctions are useful, for instance, in superconducting quantum interference devices (SQUIDs) or in vortex-flow transistors because their performance can be enhanced by tuning the parameters of the individual junctions to optimum operation values. Furthermore gated Josephson junctions can be used as Josephson field-effect transistors (JOFETs)
Threshold temperature for pairwise and many-particle thermal entanglement in the isotropic Heisenberg model
We study the threshold temperature for pairwise thermal entanglement in the
spin-1/2 isotropic Heisenberg model up to 11 spins and find that the threshold
temperature for odd and even number of qubits approaches the thermal dynamical
limit from below and above, respectively. The threshold temperature in the
thermodynamical limit is estimated. We investigate the many-particle
entanglement in both ground states and thermal states of the system, and find
that the thermal state in the four-qubit model is four-particle entangled
before a threshold temperature.Comment: 4 pages with 1 fig. More discussions on many-particle ground-state
and thermal entanglement in the multiqubit Heisenberg model from 2 to 11
qubits are adde
Thermal and ground-state entanglement in Heisenberg XX qubit rings
We study the entanglement of thermal and ground states in Heisernberg
qubit rings with a magnetic field. A general result is found that for
even-number rings pairwise entanglement between nearest-neighbor qubits is
independent on both the sign of exchange interaction constants and the sign of
magnetic fields. As an example we study the entanglement in the four-qubit
model and find that the ground state of this model without magnetic fields is
shown to be a four-body maximally entangled state measured by the -tangle.Comment: Four pages and one figure, small change
Calculating the energy spectra of magnetic molecules: application of real- and spin-space symmetries
The determination of the energy spectra of small spin systems as for instance
given by magnetic molecules is a demanding numerical problem. In this work we
review numerical approaches to diagonalize the Heisenberg Hamiltonian that
employ symmetries; in particular we focus on the spin-rotational symmetry SU(2)
in combination with point-group symmetries. With these methods one is able to
block-diagonalize the Hamiltonian and thus to treat spin systems of
unprecedented size. In addition it provides a spectroscopic labeling by
irreducible representations that is helpful when interpreting transitions
induced by Electron Paramagnetic Resonance (EPR), Nuclear Magnetic Resonance
(NMR) or Inelastic Neutron Scattering (INS). It is our aim to provide the
reader with detailed knowledge on how to set up such a diagonalization scheme.Comment: 29 pages, many figure
Magnetoelastic sensors in combination with nanometer-scale honeycombed thin film ceramic TiO2 for remote query measurement of humidity
This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder
Recommended from our members
Recrystallization of high temperature superconductors
Currently one of the most widely used high {Tc} superconductors is the Bi-based compounds Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub z} and Bi{sub 2}Sr{sub 2}Ca{sub 2}Cu{sub 3}O{sub z} (known as BSCCO 2212 and 2223 compounds) with {Tc} values of about 85 K and 110 K respectively. Lengths of high performance conductors ranging from 100 to 1000 m long are routinely fabricated and some test magnets have been wound. An additional difficulty here is that although Bi-2212 and Bi-2223 phases exist over a wide range of stoichiometries, neither has been prepared in phase-pure form. So far the most successful method of constructing reliable and robust wires or tapes is the so called powder-in-tube (PIT) technique [1, 2, 3, 4, 5, 6, 7] in which oxide powder of the appropriate stoichiometry and phase content is placed inside a metal tube, deformed into the desired geometry (round wire or flat tape), and annealed to produce the desired superconducting properties. Intermediate anneals are often incorporated between successive deformation steps. Silver is the metal used in this process because it is the most compatible with the reacting phase. In all of the commercial processes for BSCCO, Ag seems to play a special catalytic role promoting the growth of high performance aligned grains that grow in the first few micrometers near the Ag/BSCCO interface. Adjacent to the Ag, the grain alignment is more perfect and the current density is higher than in the center of the tape. It is known that Ag lowers the melting point of several of the phases but the detailed mechanism for growth of these high performance grains is not clearly understood. The purpose of this work is to study the nucleation and growth of the high performance material at this interface
Recommended from our members
Crystal growth at a Bi{sub 2}Sr{sub 2}Ca{sub 1}Cu{sub 2}O{sub 8}/Ag interface
Crystal growth at the interface between grains of Bi{sub 2}Sr{sub 2}Ca{sub 1}Cu{sub 2}O{sub 8} and an overlay of 300 nm of Ag has been studied to better understand how new grains grow and why there is such good grain alignment of the c-axis in this part of tape conductors. In 50 torr of oxygen, hillocks grow at temperatures at low as 600 C, and by 800 C have grown to large grains at the interface
Contactless and Vibration-Based Damage Detection in Rectangular Cement Beams Using Magnetoelastic Ribbon Sensors
This study investigated the innovative use of magnetoelastic sensors to detect the formation of single cracks in cement beams under bending vibrations. The detection method involved monitoring changes in the bending mode spectrum when a crack was introduced. The sensors, functioning as strain sensors, were placed on the beams, and their signals were detected non-invasively using a nearby detection coil. The beams were simply supported, and mechanical impulse excitation was applied. The recorded spectra displayed three distinct peaks representing different bending modes. The sensitivity for crack detection was determined to be a 24% change in the sensing signal for every 1% decrease in beam volume due to the crack. Factors influencing the spectra were investigated, including pre-annealing of the sensors, which improved the detection signal. The choice of beam support material was also explored, revealing that steel yielded better results than wood. Overall, the experiments demonstrated that magnetoelastic sensors enabled the detection of small cracks and provided qualitative information about their location