147 research outputs found

    Investigation of Halohydrins Degradation by Whole Cells and Cell-free Extract of Pseudomonas putida DSM 437: A Kinetic Approach

    Get PDF
    The biodegradation of two halohydrins (1,3-dichloro-2-propanol and 3-chloro-1,2-propanediol) by P. putida DSM 437 was investigated. Intact cells of previously acclimatized P. putida DSM 437 as well as cell-free extracts were used in order to study the degradation kinetics. When whole cells were used, a maximum biodegradation rate of 3-CPD (vmax= 1.28.10–5 mmol mg–1 DCW h–1) was determined, which was more than 4 times higher than that of 1,3-DCP. However, the affinity towards both halohydrins (Km) was practically the same. When using cell-free extract, the apparent vmax and Km values for 1,3-DCP were estimated at 9.61.10–6 mmol mg–1 protein h–1 and 8.00 mM, respectively, while for 3-CPD the corresponding values were 2.42.10–5 mmol mg–1 protein h–1 and 9.07 mM. GC-MS analysis of cell-free extracts samples spiked with 1,3-DCP revealed the presence of 3-CPD and glycerol, intermediates of 1,3-DCP degradation pathway. 3-CPD degradation was strongly inhibited by the presence of epichlorohydrin and to a lesser extent by glycidol, intermediates of dehalogenation pathway. This work is licensed under a Creative Commons Attribution 4.0 International License

    ACID HYDROLYSATES OF ACORN POLYSACCHARIDES AS SUBSTRATES FOR CANDIDA-UTILIS GROWTH

    No full text

    EFFECT OF TANNINS ON GROWTH AND AMYLASE PRODUCTION BY CALVATIA-GIGANTEA

    No full text

    A simple and inexpensive method for cellulase and β-glucosidase production by Neurospora crassa

    No full text

    3-Chloro-1,2-propanediol biodegradation by Ca-alginate immobilized Pseudomonas putida DSM 437 cells applying different processes: mass transfer effects

    No full text
    3-Chloro-1,2-propanediol (3-CPD) biodegradation by Ca-alginate immobilized Pseudomonas putida cells was performed in batch system, continuous stirred tank reactor (CSTR), and packed-bed reactor (PBR). Batch system exhibited higher biodegradation rates and 3-CPD uptakes compared to CSTR and PBR. The two continuous systems (CSTR and PBR) when compared at 200 mg/L 3-CPD in the inlet exhibited the same removal of 3-CPD at steady state. External mass-transfer limitations are found negligible at all systems examined, since the observable modulus for external mass transfer Ω ≪ 1 and the Biot number Bi > 1. Intra-particle diffusion resistance had a significant effect on 3-CPD biodegradation in all systems studied, but to a different extent. Thiele modulus was in the range of 2.5 in batch system, but it was increased at 11 when increasing cell loading in the beads, thus lowering significantly the respective effectiveness factor. Comparing the systems at the same cell loading in the beads PBR was less affected by internal diffusional limitations compared to CSTR and batch system, and, as a result, exhibited the highest overall effectiveness factor. © 2016, Springer-Verlag Berlin Heidelberg
    corecore