1,299 research outputs found

    H2_2 Emission Nebulosity Associated with KH 15D

    Full text link
    An H2_2 emission filament is found in close proximity to the unique object KH 15D using the adaptive optics system of the Subaru Telescope. The morphology of the filament, the presence of spectroscopic outflow signatures observed by Hamilton et al., and the detection of extended H2_2 emission from KH 15D by Deming, Charbonneau, & Harrington suggest that this filament arises from shocked H2_2 in an outflow. The filament extends about 15" to the north of KH 15D.Comment: 11 pages, 3 figures, 1 table. Astrophysical Journal Letters, in pres

    Any Regular Polyhedron Can Transform to Another by O(1) Refoldings

    Full text link
    We show that several classes of polyhedra are joined by a sequence of O(1) refolding steps, where each refolding step unfolds the current polyhedron (allowing cuts anywhere on the surface and allowing overlap) and folds that unfolding into exactly the next polyhedron; in other words, a polyhedron is refoldable into another polyhedron if they share a common unfolding. Specifically, assuming equal surface area, we prove that (1) any two tetramonohedra are refoldable to each other, (2) any doubly covered triangle is refoldable to a tetramonohedron, (3) any (augmented) regular prismatoid and doubly covered regular polygon is refoldable to a tetramonohedron, (4) any tetrahedron has a 3-step refolding sequence to a tetramonohedron, and (5) the regular dodecahedron has a 4-step refolding sequence to a tetramonohedron. In particular, we obtain at most 6-step refolding sequence between any pair of Platonic solids, applying (5) for the dodecahedron and (1) and/or (2) for all other Platonic solids. As far as the authors know, this is the first result about common unfolding involving the regular dodecahedron

    Near-Infrared Adaptive Optics Spectroscopy of Binary Brown Dwarf HD 130948B and C

    Get PDF
    We present near-infrared spectroscopy of low-mass companions in a nearby triple system HD 130948 (Gliese 564, HR 5534). Adaptive optics on the Subaru Telescope allowed spectroscopy of the individual components of the 0".13 binary system. Based on a direct comparison with a series of template spectra, we determined the spectral types of HD 130948B and C to be L4 +- 1. If we take the young age of the primary star into account (0.3-0.8 Gyr), HD 130948B and C most likely are a binary brown dwarf system.Comment: 6 pages, 3 figures, accepted for publication in ApJ Letter

    Cohesion, team mental models, and collective efficacy: Towards an integrated framework of team dynamics in sport

    Get PDF
    A nomological network on team dynamics in sports consisting of a multi-framework perspective is introduced and tested. The aim was to explore the interrelationship among cohesion, team mental models (TMM), collective-efficacy (CE), and perceived performance potential (PPP). Three hundred and forty college-aged soccer players representing 17 different teams (8 female and 9 male) participated in the study. They responded to surveys on team cohesion, TMM, CE and PPP. Results are congruent with the theoretical conceptualization of a parsimonious view of team dynamics in sports. Specifically, cohesion was found to be an exogenous variable predicting both TMM and CE beliefs. TMM and CE were correlated and predicted PPP, which in turn accounted for 59% of the variance of objective performance scores as measured by teams’ season record. From a theoretical standpoint, findings resulted in a parsimonious view of team dynamics, which may represent an initial step towards clarifying the epistemological roots and nomological network of various team-level properties. From an applied standpoint, results suggest that team expertise starts with the establishment of team cohesion. Following the establishment of cohesiveness, teammates are able to advance team-related schemas and a collective sense of confidence. Limitations and key directions for future research are outlined

    Rotation and X-ray emission from protostars

    Full text link
    The ASCA satellite has recently detected variable hard X-ray emission from two Class I protostars in the rho Oph cloud, YLW15 (IRS43) and WL6, with a characteristic time scale ~20h. In YLW15, the X-ray emission is in the form of quasi-periodic energetic flares, which we explain in terms of strong magnetic shearing and reconnection between the central star and the accretion disk. In WL6, X-ray flaring is rotationally modulated, and appears to be more like the solar-type magnetic activity ubiquitous on T Tauri stars. We find that YLW15 is a fast rotator (near break-up), while WL6 rotates with a significantly longer period. We derive a mass M_\star ~ 2 M_\odot and \simlt 0.4 M_\odot for the central stars of YLW15 and WL6 respectively. On the long term, the interactions between the star and the disk results in magnetic braking and angular momentum loss of the star. On time scales t_{br} ~ a few 10^5 yrs, i.e., of the same order as the estimated duration of the Class~I protostar stage. Close to the birthline there must be a mass-rotation relation, t_{br} \simpropto M_\star, such that stars with M_\star \simgt 1-2 M_\odot are fast rotators, while their lower-mass counterparts have had the time to spin down. The rapid rotation and strong star-disk magnetic interactions of YLW15 also naturally explain the observation of X-ray ``superflares''. In the case of YLW15, and perhaps also of other protostars, a hot coronal wind (T~10^6 K) may be responsible for the VLA thermal radio emission. This paper thus proposes the first clues to the rotation status and evolution of protostars.Comment: 13 pages with 6 figures. To be published in ApJ (April 10, 2000 Part 1 issue

    A Subarcsecond Companion to the T Tauri Star AS 353B

    Full text link
    Adaptive optics imaging of the bright visual T Tauri binary AS 353 with the Subaru Telescope shows that it is a hierarchical triple system. The secondary component, located 5.6" south of AS 353A, is resolved into a subarcsecond binary, AS 353Ba and Bb, separated by 0.24". Resolved spectroscopy of the two close components shows that both have nearly identical spectral types of about M1.5. Whereas AS 353A and Ba show clear evidence for an infrared excess, AS 353Bb does not. We discuss the possible role of multiplicity in launching the large Herbig-Haro flow associated with AS 353A.Comment: AASTeXv5.0, 21 pages, 5 figures, Astronomical Journal, in pres
    • …
    corecore