13,819 research outputs found

    Single domain YBCO/Ag bulk superconductors fabricated by seeded infiltration and growth

    Get PDF
    We have applied the seeded infiltration and growth (IG) technique to the processing of samples containing Ag in an attempt to fabricate Ag-doped Y-Ba-Cu-O (YBCO) bulk superconductors with enhanced mechanical properties. The IG technique has been used successfully to grow bulk Ag-doped YBCO superconductors of up to 25 mm in diameter in the form of single grains. The distribution of Ag in the parent Y-123 matrix fabricated by the IG technique is observed to be at least as uniform as that in samples grown by conventional top seeded melt growth (TSMG). Fine Y-211 particles were observed to be embedded within the Y-123 matrix for the IG processed samples, leading to a high critical current density, Jc, of over 70 kA/cm2 at 77.3 K in self-field. The distribution of Y-211 in the IG sample microstructure, however, is inhomogeneous, which leads to a variation in the spatial distribution of Jc throughout the bulk matrix. A maximum-trapped field of around 0.43 T at 1.2 mm above the sample surface (i.e. including 0.7 mm for the sensor mould thickness) is observed at liquid nitrogen temperature, despite the relatively small grain size of the sample (20 mm diameter × 7 mm thickness)

    Frustration-induced eta inversion in the S=1/2 bond-alternating spin chain

    Full text link
    We study the frustration-induced enhancement of the incommensurate correlation for a bond-alternating quantum spin chain in a magnetic field, which is associated with a quasi-one-dimensional organic compound F5PNN. We investigate the temperature dependence of the staggered susceptibilities by using the density matrix renormalization group, and then find that the incommensurate correlation becomes dominant in a certain range of the magnetic field. We also discuss the mechanism of this enhancement on the basis of the mapping to the effective S=1/2 XXZ chain and a possibility of the field-induced incommensurate long range order.Comment: 4 pages, 5 figures, replaced with revised version accepted to PR

    An investigation of children's peer trust across culture: is the composition of peer trust universal?

    Get PDF
    The components of children's trust in same-gender peers (trust beliefs, ascribed trustworthiness, and dyadic reciprocal trust) were examined in samples of 8- to 11-year-olds from the UK, Italy, and Japan. Trust was assessed by children's ratings of the extent to which same-gender classmates kept promises and kept secrets. Social relations analyses confirmed that children from each country showed significant: (a) actor variance demonstrating reliable individual differences in trust beliefs, (b) partner variance demonstrating reliable individual differences in ascribed trustworthiness, and (c ) relationship variance demonstrating unique relationships between interaction partners. Cultural differences in trust beliefs and ascribed trustworthiness also emerged and these differences were attributed to the tendency for children from cultures that value societal goals to share personal information with the peer group

    How Do Nonlinear Voids Affect Light Propagation ?

    Full text link
    Propagation of light in a clumpy universe is examined. As an inhomogeneous matter distribution, we take a spherical void surrounded by a dust shell where the ``lost mass'' in the void is compensated by the shell. We study how the angular-diameter distance behaves when such a structure exists. The angular-diameter distance is calculated by integrating the Raychaudhuri equation including the shear. An explicit expression for the junction condition for the massive thin shell is calculated. We apply these results to a dust shell embedded in a Friedmann universe and determine how the distance-redshift relation is modified compared with that in the purely Friedmann universe. We also study the distribution of distances in a universe filled with voids. We show that the void-filled universe gives a larger distance than the FRW universe by 5\sim 5% at z1z \sim 1 if the size of the void is 5\sim 5% of the Horizon radius.Comment: To appear in Prog. Theor. Phys. 10

    Critical exponent in the magnetization curve of quantum spin chains

    Full text link
    The ground state magnetization curve around the critical magnetic field HcH_c of quantum spin chains with the spin gap is investigated. We propose a size scaling method to estimate the critical exponent δ\delta defined as mHHc1/δm\sim |H-H_c|^{1/\delta} from finite cluster calculation. The applications of the method to the S=1 antiferromagnetic chain and S=1/2 bond alternating chain lead to a common conclusion δ=2\delta =2. The same result is derived for both edges of the magnetization plateau of the S=3/2 antiferromagnetic chain with the single ion anisotropy.Comment: 4 pages, Revtex, with 4 eps figure

    Nonvanishing Local Moment in Triplet Superconductors

    Full text link
    The Kondo effect in a px+ipyp_x + {\rm i} p_y-wave superconductor is studied by applying the Wilson's numerical renormalization group method. In this type of superconductor with a full energy gap like a s-wave one, the ground state is always a spin doublet, while a local spin is shrunk by the Kondo effect. The calculated magnetic susceptibility indicates that the spin of the ground state is generated by the orbital effect of the px+ipyp_x + {\rm i} p_y-wave Cooper pairs. The effect of spin polarization of the triplet superconductor is also discussed.Comment: 5 pages, 4 figures, to be published in J. Phys. Soc. Jp

    Metamagnetism of antiferromagnetic XXZ quantum spin chains

    Full text link
    The magnetization process of the one-dimensional antiferromagnetic Heisenberg model with the Ising-like anisotropic exchange interaction is studied by the exact diagonalization technique. It results in the evidence of the first-order spin flop transition with a finite magnetization jump in the N\'eel ordered phase for S1S\geq 1. It implies that the S=1/2 chain is an exceptional case where the metamagnetic transition becomes second-order due to large quantum fluctuations.Comment: 4 pages, Revtex, with 6 eps figure

    Magnetization Plateau in the Frustrated Spin Ladder

    Full text link
    The magnetization process of the S=1/2 antiferromagnetic spin ladder at T=0 is studied by the exact diagonalization of finite clusters and size scaling analyses. It is found that a magnetization plateau appears at half the saturation value (m=1/2) in the presence of a sufficiently large next-nearest-neighbor exchange interaction to yield the frustration, when the rung coupling is larger than the leg one. The phase diagram at m=1/2 is given by the analysis based on the conformal invariance. The magnetization curves are also presented in several cases.Comment: 9 pages, 9 figures, other comment
    corecore