18,152 research outputs found

    Nernst and Seebeck effect in a graphene nanoribbon

    Get PDF
    The thermoelectric power, including the Nernst and Seebeck effects, in graphene nanoribbon is studied. By using the non-equilibrium Green function combining with the tight-binding Hamiltonian, the Nernst and Seebeck coefficients are obtained. Due to the electron-hole symmetry, the Nernst coefficient is an even function of the Fermi energy while the Seebeck coefficient is an odd function regardless of the magnetic field. In the presence of a strong magnetic field, the Nernst and Seebeck coefficients are almost independent of the chirality and width of the nanoribbon, and they show peaks when the Fermi energy crosses the Landau levels. The height of nn-th (excluding n=0n=0) peak is [ln2/n][\ln2/|n|] for the Nernst effect and is ln2/n\ln2/n for the Seebeck effect. For the zeroth peak, it is abnormal with height [2ln2][2\ln2] for the Nernst effect and the peak disappears for the Seebeck effect. When the magnetic field is turned off, however, the Nernst effect is absent and only Seebeck effect exists. In this case, the Seebeck coefficient strongly depends on the chirality of the nanoribbon. The peaks are equidistant for the nanoribbons with zigzag edge but are irregularly distributed for the armchair edge. In particular, for the insulating armchair ribbon, the Seebeck coefficient can be very large near the Dirac point. When the magnetic field varies from zero to large values, the differences among the Seebeck coefficients for different chiral ribbons gradually vanish and the nonzero value of Nernst coefficient appears first near the Dirac point then gradually extents to the whole energy region.Comment: 8 pages, 7 figure

    Improved position measurement of nano electromechanical systems using cross correlations

    Full text link
    We consider position measurements using the cross-correlated output of two tunnel junction position detectors. Using a fully quantum treatment, we calculate the equation of motion for the density matrix of the coupled detector-detector-mechanical oscillator system. After discussing the presence of a bound on the peak-to-background ratio in a position measurement using a single detector, we show how one can use detector cross correlations to overcome this bound. We analyze two different possible experimental realizations of the cross correlation measurement and show that in both cases the maximum cross-correlated output is obtained when using twin detectors and applying equal bias to each tunnel junction. Furthermore, we show how the double-detector setup can be exploited to drastically reduce the added displacement noise of the oscillator.Comment: 9 pages, 1 figure; v2: new Sec.

    Calculation of the current noise spectrum in mesoscopic transport: an efficient quantum master equation approach

    Full text link
    Based on our recent work on quantum transport [Li et al., Phys. Rev. B 71, 205304 (2005)], where the calculation of transport current by means of quantum master equation was presented, in this paper we show how an efficient calculation can be performed for the transport noise spectrum. Compared to the longstanding classical rate equation or the recently proposed quantum trajectory method, the approach presented in this paper combines their respective advantages, i.e., it enables us to tackle both the many-body Coulomb interactionand quantum coherence on equal footing and under a wide range of setup circumstances. The practical performance and advantages are illustrated by a number of examples, where besides the known results and new insights obtained in a transparent manner, we find that this alternative approach is much simpler than other well-known full quantum mechanical methods such as the Landauer-B\"uttiker scattering matrix theory and the nonequilibrium Green's function technique.Comment: 13 pages, 3 figures, submitted to PR

    Thermoelectric and Magnetothermoelectric Transport Measurements of Graphene

    Full text link
    The conductance and thermoelectric power (TEP) of graphene is simultaneously measured using microfabricated heater and thermometer electrodes. The sign of the TEP changes across the charge neutrality point as the majority carrier density switches from electron to hole. The gate dependent conductance and TEP exhibit a quantitative agreement with the semiclassical Mott relation. In the quantum Hall regime at high magnetic field, quantized thermopower and Nernst signals are observed and are also in agreement with the generalized Mott relation, except for strong deviations near the charge neutrality point

    Noise properties of two single electron transistors coupled by a nanomechanical resonator

    Full text link
    We analyze the noise properties of two single electron transistors (SETs) coupled via a shared voltage gate consisting of a nanomechanical resonator. Working in the regime where the resonator can be treated as a classical system, we find that the SETs act on the resonator like two independent heat baths. The coupling to the resonator generates positive correlations in the currents flowing through each of the SETs as well as between the two currents. In the regime where the dynamics of the resonator is dominated by the back-action of the SETs, these positive correlations can lead to parametrically large enhancements of the low frequency current noise. These noise properties can be understood in terms of the effects on the SET currents of fluctuations in the state of a resonator in thermal equilibrium which persist for times of order the resonator damping time.Comment: Accepted for publication in Phys. Rev.

    Electrical transport through a single-electron transistor strongly coupled to an oscillator

    Full text link
    We investigate electrical transport through a single-electron transistor coupled to a nanomechanical oscillator. Using a combination of a master-equation approach and a numerical Monte Carlo method, we calculate the average current and the current noise in the strong-coupling regime, studying deviations from previously derived analytic results valid in the limit of weak-coupling. After generalizing the weak-coupling theory to enable the calculation of higher cumulants of the current, we use our numerical approach to study how the third cumulant is affected in the strong-coupling regime. In this case, we find an interesting crossover between a weak-coupling transport regime where the third cumulant heavily depends on the frequency of the oscillator to one where it becomes practically independent of this parameter. Finally, we study the spectrum of the transport noise and show that the two peaks found in the weak-coupling limit merge on increasing the coupling strength. Our calculation of the frequency-dependence of the noise also allows to describe how transport-induced damping of the mechanical oscillations is affected in the strong-coupling regime.Comment: 11 pages, 9 figure

    Current noise of a quantum dot p-i-n junction in a photonic crystal

    Full text link
    The shot-noise spectrum of a quantum dot p-i-n junction embedded inside a three-dimensional photonic crystal is investigated. Radiative decay properties of quantum dot excitons can be obtained from the observation of the current noise. The characteristic of the photonic band gap is revealed in the current noise with discontinuous behavior. Applications of such a device in entanglement generation and emission of single photons are pointed out, and may be achieved with current technologies.Comment: 4 pages, 3 figures, to appear in Phys. Rev. B (2005

    Non-equilibrium Entanglement and Noise in Coupled Qubits

    Full text link
    We study charge entanglement in two Coulomb-coupled double quantum dots in thermal equilibrium and under stationary non-equilibrium transport conditions. In the transport regime, the entanglement exhibits a clear switching threshold and various limits due to suppression of tunneling by Quantum Zeno localisation or by an interaction induced energy gap. We also calculate quantum noise spectra and discuss the inter-dot current correlation as an indicator of the entanglement in transport experiments.Comment: 4 pages, 4 figure

    Using single quantum states as spin filters to study spin polarization in ferromagnets

    Full text link
    By measuring electron tunneling between a ferromagnet and individual energy levels in an aluminum quantum dot, we show how spin-resolved quantum states can be used as filters to determine spin-dependent tunneling rates. We also observe magnetic-field-dependent shifts in the magnet's electrochemical potential relative to the dot's energy levels. The shifts vary between samples and are generally smaller than expected from the magnet's spin-polarized density of states. We suggest that they are affected by field-dependent charge redistribution at the magnetic interface.Comment: 4 pages, 1 color figur

    Phase-change chalcogenide glass metamaterial

    Full text link
    Combining metamaterials with functional media brings a new dimension to their performance. Here we demonstrate substantial resonance frequency tuning in a photonic metamaterial hybridized with an electrically/optically switchable chalcogenide glass. The transition between amorphous and crystalline forms brings about a 10% shift in the near-infrared resonance wavelength of an asymmetric split-ring array, providing transmission modulation functionality with a contrast ratio of 4:1 in a device of sub-wavelength thickness.Comment: 3 pages, 3 figure
    corecore