373 research outputs found

    Quantum mechanical and quasiclassical investigation of the time domain nonadiabatic dynamics of NO2 close to the bottom of the X2A1-A2B2 conical intersection

    Get PDF
    We use the effective Hamiltonian that we recently fitted against the first 306 experimentally observed vibronic transitions of NO2 [J. Chem. Phys. 119, 5923 (2003)] to investigate the time domain nonadiabatic dynamics of this molecule on the coupled X2A1 and A2B2 electronic states, using both quantum mechanical and quasiclassical techniques. From the quantum mechanical point of view, we show that the transfer of population to the electronic ground state originating from a wave packet launched on the excited state occurs in a stepwise fashion. The evolution of wave packets launched on the electronic ground state is instead more complex because the crossing seam is located close to the bottom of the electronic excited state. We next use the mapping formalism, which replaces the discrete electronic degrees of freedom by continuous ones, to obtain a classical description of the coupled electronic states. We propagate gaussian swarms of trajectories to show that this approach can be used to calculate the populations in each electronic state. We finally propose a very simple trajectory surface hopping model, which assumes that trajectories have a constant probability to jump onto the other state in a particular region of the phase space and a null hopping probability outside from this region. Quasiclassical calculations show that this model enables a precise estimation of complex quantities, like for example the projection of the instantaneous probability density on given planes.Comment: accepted for publication in J. Chem. Phy

    Fractional bidromy in the vibrational spectrum of HOCl

    Full text link
    We introduce the notion of fractional bidromy which is the combination of fractional monodromy and bidromy, two recent generalizations of Hamiltonian monodromy. We consider the vibrational spectrum of the HOCl molecule which is used as an illustrative example to show the presence of nontrivial fractional bidromy. To our knowledge, this is the first example of a molecular system where such a generalized monodromy is exhibited.Comment: 9 pages, 2 figue

    The CO A-X System for Constraining Cosmological Drift of the Proton-Electron Mass Ratio

    Get PDF
    The A1ΠX1Σ+\textrm{A}^1\Pi-\textrm{X}^1\Sigma^+ band system of carbon monoxide, which has been detected in six highly redshifted galaxies (z=1.62.7z=1.6-2.7), is identified as a novel probe method to search for possible variations of the proton-electron mass ratio (μ\mu) on cosmological time scales. Laboratory wavelengths of the spectral lines of the A-X (vv,0) bands for v=09v=0-9 have been determined at an accuracy of Δλ/λ=1.5×107\Delta\lambda/\lambda=1.5 \times 10^{-7} through VUV Fourier-transform absorption spectroscopy, providing a comprehensive and accurate zero-redshift data set. For the (0,0) and (1,0) bands, two-photon Doppler-free laser spectroscopy has been applied at the 3×1083 \times 10^{-8} accuracy level, verifying the absorption data. Sensitivity coefficients KμK_{\mu} for a varying μ\mu have been calculated for the CO A-X bands, so that an operational method results to search for μ\mu-variation.Comment: 7 pages (main article), 3 figures, includes supplementary materia

    Theoretical investigation of finite size effects at DNA melting

    Get PDF
    We investigated how the finiteness of the length of the sequence affects the phase transition that takes place at DNA melting temperature. For this purpose, we modified the Transfer Integral method to adapt it to the calculation of both extensive (partition function, entropy, specific heat, etc) and non-extensive (order parameter and correlation length) thermodynamic quantities of finite sequences with open boundary conditions, and applied the modified procedure to two different dynamical models. We showed that rounding of the transition clearly takes place when the length of the sequence is decreased. We also performed a finite-size scaling analysis of the two models and showed that the singular part of the free energy can indeed be expressed in terms of an homogeneous function. However, both the correlation length and the average separation between paired bases diverge at the melting transition, so that it is no longer clear to which of these two quantities the length of the system should be compared. Moreover, Josephson's identity is satisfied for none of the investigated models, so that the derivation of the characteristic exponents which appear, for example, in the expression of the specific heat, requires some care

    Dynamical model based on finite stacking enthalpies for homogeneous and inhomogeneous DNA thermal denaturation

    Full text link
    We present a nonlinear dynamical model for DNA thermal denaturation, which is based on the finite stacking enthalpies used in thermodynamical nearest-neighbour calculations. Within this model, the finiteness of stacking enthalpies is shown to be responsible for the sharpness of calculated melting curves. Transfer-integral and molecular dynamics calculations are performed to demonstrate that the proposed model leads to good agreement with known experimental results for both homogeneous and inhomogeneous DNA

    VUV Fourier-transform absorption study of the Lyman and Werner bands in D2

    Get PDF
    An extensive survey of the D2 absorption spectrum has been performed with the high-resolution VUV Fourier-transform spectrometer of the DESIRS beamline at the SOLEIL synchrotron. The frequency range of 90 000-119 000 cm-1 covers the full depth of the potential wells of the B 1{\Sigma}+u, B' 1{\Sigma}+u, and C 1{\Pi}u electronic states up to the D(1s) + D(2\ell) dissociation limit. Improved level energies of rovibrational levels have been determined up to respectively v = 51, v = 13, and v = 20. Highest resolution is achieved by probing absorption in a molecular gas jet with slit geometry, as well as in a liquid helium cooled static gas cell, resulting in line widths of ~0.35 cm-1. Extended calibration methods are employed to extract line positions of D2 lines at absolute accuracies of 0.03 cm-1. The D1{\Pi}u and B" 1{\Sigma}+u electronic states correlate with the D(1s) + D(3\ell) dissociation limit, but support a few vibrational levels below the second dissociation limit, respectively v = 0-3 and v = 0-1, and are also included in the presented study. The complete set of resulting level energies is the most comprehensive and accurate data set for D2. The observations are compared with previous studies, both experimental and theoretical.Comment: 13 pages, 6 figures. The second set of Tables (Tables I-IV after the references), is auxiliary materia

    1/f fluctuations of DNA temperature at thermal denaturation

    Get PDF
    We theoretically investigated the temperature fluctuations of DNA close to denaturation and observed a strong enhancement of these fluctuations at the critical temperature. Although in a much lower frequency range, such a sharp increase was also reported in the recent experimental work of Nagapriya et al [Phys. Rev. Lett. 96, 038102 (2006)]. We showed that there is instead no enhancement of temperature fluctuations when the dissipation coefficient in Langevin equations is assumed to be larger than a few tens of ps-1, and pointed out the possible role of the solvent in real experiments. We sought for a possible correlation between the growth of large bubbles and the enhancement of temperature fluctuations but found no direct evidence thereof. Finally, we showed that neither the enhancement of fluctuations nor the 1/f dependence are observed at the scale of a single base pair, while these properties show up when summing the contributions of a large number of base pairs. We therefore conclude that both effects result from collective motions that are facilitated by the divergence of the correlation length at denaturation

    High-resolution Fourier-transform XUV photoabsorption spectroscopy of 14N15N

    Get PDF
    The first comprehensive high-resolution photoabsorption spectrum of 14N15N has been recorded using the Fourier-transform spectrometer attached to the Desirs beamline at the Soleil synchrotron. Observations are made in the extreme ultraviolet (XUV) and span 100,000-109,000 cm-1 (100-91.7 nm). The observed absorption lines have been assigned to 25 bands and reduced to a set of transition energies, f values, and linewidths. This analysis has verified the predictions of a theoretical model of N2 that simulates its photoabsorption and photodissociation cross section by solution of an isotopomer independent formulation of the coupled-channel Schroedinger equation. The mass dependence of predissociation linewidths and oscillator strengths is clearly evident and many local perturbations of transition energies, strengths, and widths within individual rotational series have been observed.Comment: 14 pages, 8 figures, one data archiv

    Statistical physics of the melting of inhomogeneous DNA

    Full text link
    We studied how the inhomogeneity of a sequence affects the phase transition that takes place at DNA melting. Unlike previous works, which considered thermodynamic quantities averaged over many different inhomogeneous sequences, we focused on precise sequences and investigated the succession of local openings that lead to their dissociation. For this purpose, we performed Transfer Integral type calculations with two different dynamical models, namely the heterogeneous Dauxois-Peyrard-Bishop model and the model based on finite stacking enthalpies we recently proposed. It appears that, for both models, the essential effect of heterogeneity is to let different portions of the investigated sequences open at slightly different temperatures. Besides this macroscopic effect, the local aperture of each portion indeed turns out to be very similar to that of a homogeneous sequence with the same length. Rounding of each local opening transition is therefore merely a size effect. For the Dauxois-Peyrard-Bishop model, sequences with a few thousands base pairs are still far from the thermodynamic limit, so that it is inappropriate, for this model, to discuss the order of the transition associated with each local opening. In contrast, sequences with several hundreds to a few thousands base pairs are pretty close to the thermodynamic limit for the model we proposed. The temperature interval where power laws holds is consequently broad enough to enable the estimation of critical exponents. On the basis of the few examples we investigated, it seems that, for our model, disorder does not necessarily induce a decrease of the order of the transition
    corecore