60 research outputs found

    Quantifying the ki-67 heterogeneity profile in prostate cancer.

    Get PDF
    BackgroundKi-67 is a robust predictive/prognostic marker in prostate cancer; however, tumor heterogeneity in prostate biopsy samples is not well studied.MethodsUsing an MRI/US fusion device, biopsy cores were obtained systematically and by targeting when indicated by MRI. Prostate cores containing cancer from 77 consecutive men were analyzed. The highest Ki-67 was used to determine interprostatic variation. Ki-67 range (highest minus lowest) was used to determine intraprostatic and intralesion variation. Apparent diffusion coefficient (ADC) values were evaluated in relation to Ki-67.ResultsInterprostatic Ki-67 mean ± standard deviation (SD) values for NCCN low (L), intermediate (I), and high (H) risk patients were 5.1 ± 3.8%, 7.4 ± 6.8%, and 12.0 ± 12.4% (ANOVA P = 0.013). Intraprostatic mean ± SD Ki-67 ranges in L, I, and H risk patients were 2.6 ± 3.6%, 5.3 ± 6.8%, and 10.9 ± 12.3% (ANOVA P = 0.027). Intralesion mean ± SD Ki-67 ranges in L, I, and H risk patients were 1.1 ± 0.9%, 5.2 ± 7.9%, and 8.1 ± 10.8% (ANOVA P = 0.22). ADC values at Ki-67 > and <7.1% were 860 ± 203 and 1036 ± 217, respectively (P = 0.0029).ConclusionsHigh risk patients have significantly higher inter- and intraprostatic Ki-67 heterogeneity. This needs to be considered when utilizing Ki-67 clinically

    Definition of medical event is to be based on the total source strength for evaluation of permanent prostate brachytherapy: A report from the American Society for Radiation Oncology

    Get PDF
    AbstractPurposeThe Nuclear Regulatory Commission deems it to be a medical event (ME) if the total dose delivered differs from the prescribed dose by 20% or more. A dose-based definition of ME is not appropriate for permanent prostate brachytherapy as it generates too many spurious MEs and thereby creates unnecessary apprehension in patients, and ties up regulatory bodies and the licensees in unnecessary and burdensome investigations. A more suitable definition of ME is required for permanent prostate brachytherapy.Methods and MaterialsThe American Society for Radiation Oncology (ASTRO) formed a working group of experienced clinicians to review the literature, assess the validity of current regulations, and make specific recommendations about the definition of an ME in permanent prostate brachytherapy.ResultsThe working group found that the current definition of ME in §35.3045 as “the total dose delivered differs from the prescribed dose by 20 percent or more” was not suitable for permanent prostate brachytherapy since the prostate volume (and hence the resultant calculated prostate dose) is dependent on the timing of the imaging, the imaging modality used, the observer variability in prostate contouring, the planning margins used, inadequacies of brachytherapy treatment planning systems to calculate tissue doses, and seed migration within and outside the prostate. If a dose-based definition for permanent implants is applied strictly, many properly executed implants would be improperly classified as an ME leading to a detrimental effect on brachytherapy. The working group found that a source strength-based criterion, of >20% of source strength prescribed in the post-procedure written directive being implanted outside the planning target volume is more appropriate for defining ME in permanent prostate brachytherapy.ConclusionsASTRO recommends that the definition of ME for permanent prostate brachytherapy should not be dose based but should be based upon the source strength (air-kerma strength) administered

    Image-guided high-dose-rate brachytherapy: preliminary outcomes and toxicity of a joint interventional radiology and radiation oncology technique for achieving local control in challenging cases.

    Get PDF
    PurposeTo determine the ability of image-guided high-dose-rate brachytherapy (IG-HDR) to provide local control (LC) of lesions in non-traditional locations for patients with heavily pre-treated malignancies.Material and methodsThis retrospective series included 18 patients treated between 2012 and 2014 with IG-HDR, either in combination with external beam radiotherapy (EBRT; n = 9) or as monotherapy (n = 9). Lesions were located in the pelvis (n = 5), extremity (n = 2), abdomen/retroperitoneum (n = 9), and head/neck (n = 2). All cases were performed in conjunction between interventional radiology and radiation oncology. Toxicity was graded based on CTCAE v4.0 and local failure was determined by RECIST criteria. Kaplan-Meier analysis was performed for LC and overall survival.ResultsThe median follow-up was 11.9 months. Two patients had localized disease at presentation; the remainder had recurrent and/or metastatic disease. Seven patients had prior EBRT, with a median equivalent dose in 2 Gy fractions (EQD2) of 47.0 Gy. The median total EQD2s were 34 Gy and 60.9 Gy for patients treated with monotherapy or combination therapy, respectively. Image-guided high-dose rate brachytherapy was delivered in one to six fractions. Six patients had local failures at a median interval of 5.27 months with a one-year LC rate of 59.3% and a one-year overall survival of 40.7%. Six patients died from their disease at a median interval of 6.85 months from the end of treatment. There were no grade ≥ 3 acute toxicities but two patients had serious long term toxicities.ConclusionsWe demonstrate a good one year LC rate of nearly 60%, and a favorable toxicity profile when utilizing IG-HDR to deliver high doses of radiation with high precision into targets not readily accessible by other forms of local therapy. These preliminary results suggest that further studies utilizing this approach may be considered for patients with difficult to access lesions that require LC

    From whole gland to hemigland to ultra-focal high-dose-rate prostate brachytherapy: A dosimetric analysis

    Full text link
    Purpose: To assess the magnitude of dosimetric reductions of a focal and ultra-focal high-dose-rate (HDR) prostate brachytherapy treatment strategy relative to standard whole gland (WG) treatment. Methods and Materials: HDR brachytherapy plans for five patients treated with WG HDR monotherapy were optimized to assess different treatment strategies. Plans were generated to treat the hemigland (HG), one-third gland (1/3G), and one-sixth gland (1/6G), as well as to assess treating the WG with a boost to one of those sub-volumes (WG+HG, WG+1/3G, WG+1/6G). Dosimetric parameters analyzed included Target D90%, V100%, V150%, Bladder (B), Rectal (R), Urethral (U) D0.1, 1 and 2cc, Urethral V75%, and the V50% to the contralateral HG. Two-tailed t tests were used for comparison of means, and p-values less than 0.05 were considered statistically significant. Results: Target objectives (D90>100% and V100>97%) were met in all cases. Significant organs at risk dose reductions were achieved for all approaches compared with WG plans. 1/6G vs WG plans resulted in the greatest reduction in dose with a mean bladder D2cc 24.7 vs 64.8%, rectal D2cc 32.8 vs 65.3%, urethral D1cc 52.1 vs 103.8%, and V75 14.5 vs 75% (p < 0.05 for all comparisons). Conclusion: Significant dose reductions to organs at risk can be achieved using HDR focal brachytherapy. The magnitude of the reductions achievable with treating progressively smaller sub-volumes suggests the potential to reduce morbidity, but the clinical impact on morbidity and tumor control remain to be investigated

    The American Brachytherapy Society Treatment Recommendations for Locally Advanced Carcinoma of the Cervix Part II: High Dose-Rate Brachytherapy

    Get PDF
    This report presents the 2011 update to the American Brachytherapy Society (ABS) high-dose-rate (HDR) brachytherapy guidelines for locally advanced cervical cancer
    corecore