1,250 research outputs found
Small scale noise and wind tunnel tests of upper surface blowing nozzle flap concepts. Volume 1. Aerodynamic test results
The results and analyses of aerodynamic and acoustic studies conducted on the small scale noise and wind tunnel tests of upper surface blowing nozzle flap concepts are presented. Various types of nozzle flap concepts were tested. These are an upper surface blowing concept with a multiple slot arrangement with seven slots (seven slotted nozzle), an upper surface blowing type with a large nozzle exit at approximately mid-chord location in conjunction with a powered trailing edge flap with multiple slots (split flow or partially slotted nozzle). In addition, aerodynamic tests were continued on a similar multi-slotted nozzle flap, but with 14 slots. All three types of nozzle flap concepts tested appear to be about equal in overall aerodynamic performance but with the split flow nozzle somewhat better than the other two nozzle flaps in the landing approach mode. All nozzle flaps can be deflected to a large angle to increase drag without significant loss in lift. The nozzle flap concepts appear to be viable aerodynamic drag modulation devices for landing
Energy cost associated with vortex crossing in superconductors
Starting from the Ginzburg-Landau free energy of a type II superconductor in
a magnetic field we estimate the energy associated with two vortices crossing.
The calculations are performed by assuming that we are in a part of the phase
diagram where the lowest Landau level approximation is valid. We consider only
two vortices but with two markedly different sets of boundary conditions: on a
sphere and on a plane with quasi-periodic boundary conditions. We find that the
answers are very similar suggesting that the energy is localised to the
crossing point. The crossing energy is found to be field and temperature
dependent -- with a value at the experimentally measured melting line of
, where is the Lindemann
melting criterion parameter. The crossing energy is then used with an extension
of the Marchetti, Nelson and Cates hydrodynamic theory to suggest an
explanation of the recent transport experiments of Safar {{\em et al.}\ }.Comment: 15 pages, RevTex v3.0, followed by 5 postscript figure
Weakly Interacting Bose-Einstein Condensates Under Rotation: Mean-field versus Exact Solutions
We consider a weakly-interacting, harmonically-trapped Bose-Einstein
condensed gas under rotation and investigate the connection between the
energies obtained from mean-field calculations and from exact diagonalizations
in a subspace of degenerate states. From the latter we derive an approximation
scheme valid in the thermodynamic limit of many particles. Mean-field results
are shown to emerge as the correct leading-order approximation to exact
calculations in the same subspace.Comment: 4 pages, RevTex, submitted to PR
Condensation of `composite bosons' in a rotating BEC
We provide evidence for several novel phases in the dilute limit of rotating
BECs. By exact calculation of wavefunctions and energies for small numbers of
particles, we show that the states near integer angular momentum per particle
are best considered condensates of composite entities, involving vortices and
atoms. We are led to this result by explicit comparison with a description
purely in terms of vortices. Several parallels with the fractional quantum Hall
effect emerge, including the presence of the Pfaffian state.Comment: 4 pages, Latex, 3 figure
Exact Eignstates for Trapped Weakly Interacting Bosons in Two Dimensions
A system of N two-dimensional weakly interacting bosons in a harmonic trap is
considered. When the two-particle potential is a delta function Smith and
Wilkin have analytically proved that the elementary symmetric polynomials of
particle coordinates measured from the center of mass are exact eigenstates. In
this study, we point out that their proof works equally well for an arbitrary
two-particle potential which possesses the translational and rotational
symmetries. We find that the interaction energy associated with the eigenstate
with angular momentum L is equal to aN(N-1)/2+(b-a)NL/2, where a and b are the
interaction energies of two bosons in the lowest-energy one-particle state with
zero and one unit of angular momentum, respectively. Additionally, we study
briefly the case of attractive quartic interactions. We prove rigorously that
the lowest-energy state is the one in which all angular momentum is carried by
the center of mass motion.Comment: 4 pages, minor changes made, to appear in PRA Brie
Scaling in high-temperature superconductors
A Hartree approximation is used to study the interplay of two kinds of
scaling which arise in high-temperature superconductors, namely critical-point
scaling and that due to the confinement of electron pairs to their lowest
Landau level in the presence of an applied magnetic field. In the neighbourhood
of the zero-field critical point, thermodynamic functions scale with the
scaling variable , which differs from the variable
suggested by the gaussian approximation.
Lowest-Landau-level (LLL) scaling occurs in a region of high field surrounding
the upper critical field line but not in the vicinity of the zero-field
transition. For YBaCuO in particular, a field of at least 10 T is needed to
observe LLL scaling. These results are consistent with a range of recent
experimental measurements of the magnetization, transport properties and,
especially, the specific heat of high- materials.Comment: 22 pages + 1 figure appended as postscript fil
Quantum Phases of Vortices in Rotating Bose-Einstein Condensates
We investigate the groundstates of weakly interacting bosons in a rotating
trap as a function of the number of bosons, , and the average number of
vortices, . We identify the filling fraction as the
parameter controlling the nature of these states. We present results indicating
that, as a function of , there is a zero temperature {\it phase
transition} between a triangular vortex lattice phase, and strongly-correlated
vortex liquid phases. The vortex liquid phases appear to be the Read-Rezayi
parafermion states
Stability of rotating states in a weakly-interacting Bose-Einstein condensate
We investigate the lowest state of a rotating, weakly-interacting
Bose-Einstein condensate trapped in a harmonic confining potential that is
driven by an infinitesimally asymmetric perturbation. Although in an
axially-symmetric confining potential the gas has an axially-symmetric
single-particle density distribution, we show that in the presence of the small
asymmetric perturbation its lowest state is the one given by the mean-field
approximation, which is a broken-symmetric state. We also estimate the rate of
relaxation of angular momentum when the gas is no longer driven by the
asymmetric perturbation and identify two regimes of "slow" and "fast"
relaxation. States of certain symmetry are found to be more robust.Comment: 6 pages, RevTe
When a patient\u27s ethnicity is declared, medical students\u27 decision-making processes are affected
Background: Disparity in health status and healthcare outcomes is widespread and well known. This holds true for Indigenous peoples in many settings including Australia and Hawaii. While multi-factorial, there is increasing evidence of health practitioner contribution to this disparity. This research explored senior medical students’ clinical decision-making processes.
Methods: A qualitative study was conducted in 2014 with 30 final year medical students from The University of Melbourne, Australia, and The John Burns Medical School, Hawaii, USA. Each student responded to questions about a paper-based case, first in writing and elaborated further in an interview. Half the students were given a case of a patient whose ethnicity was not declared; the other half considered the patient who was Native Hawaiian or Australian Aboriginal. A systematic thematic analysis of the interview transcripts was conducted.
Results: The study detected subtle biases in students’ ways of talking about the Indigenous person and their anticipation of interacting with her as a patient. Four main themes emerged from the interview transcripts: the patient as a person; constructions of the person as patient; patient–student/doctor interactions; and the value of various education settings. There was a strong commitment to the patient’s agenda and to the element of trust in the doctor–patient interaction.
Conclusion: These findings will help to advance medical curricula so that institutions graduate physicians who are increasingly able to contribute to equitable outcomes for all patients in their care. The study also draws attention to subtle biases based on ethnicity that may be currently at play in physicians’ practices
Plastic energies in layered superconductors
We estimate the energy cost associated with two pancake vortices colliding in
a layered superconductor. It is argued that this energy sets the plastics
energy scale and is the analogue of the crossing energy for vortices in the
continuum case. The starting point of the calculation is the Lawrence-Doniach
version of the Ginzburg-Landau free energy for type-II superconductors. The
magnetic fields considered are along the c-direction and assumed to be
sufficiently high that the lowest Landau level approximation is valid. For
Bi-2212, where it is know that layering is very important, the results are
radically different from what would have been obtained using a
three-dimensional anisotropic continuum model. We then use the plastic energy
for Bi-2212 to successfully explain recent results from Hellerqvist {\em et
al.}\ on its longitudinal resistance.Comment: 5 Pages Revtex, 4 uuencoded postscript figure
- …