1,466 research outputs found

    Stability of the Black Hole Horizon and the Landau Ghost

    Get PDF
    The stability of the black hole horizon is demanded by both cosmic censorship and the generalized second law of thermodynamics. We test the consistency of these principles by attempting to exceed the black hole extremality condition in various process in which a U(1) charge is added to a nearly extreme Reissner--Nordstr\"om black hole charged with a {\it different\/} type of U(1) charge. For an infalling spherical charged shell the attempt is foiled by the self--Coulomb repulsion of the shell. For an infalling classical charge it fails because the required classical charge radius exceeds the size of the black hole. For a quantum charge the horizon is saved because in order to avoid the Landau ghost, the effective coupling constant cannot be large enough to accomplish the removal.Comment: 12 pages, RevTe

    Linear Response Calculations of Spin Fluctuations

    Full text link
    A variational formulation of the time--dependent linear response based on the Sternheimer method is developed in order to make practical ab initio calculations of dynamical spin susceptibilities of solids. Using gradient density functional and a muffin-tin-orbital representation, the efficiency of the approach is demonstrated by applications to selected magnetic and strongly paramagnetic metals. The results are found to be consistent with experiment and are compared with previous theoretical calculations.Comment: 11 pages, RevTex; 3 Figures, postscript, high-resolution printing (~1200dpi) is desire

    How does the entropy/information bound work ?

    Full text link
    According to the universal entropy bound, the entropy (and hence information capacity) of a complete weakly self-gravitating physical system can be bounded exclusively in terms of its circumscribing radius and total gravitating energy. The bound's correctness is supported by explicit statistical calculations of entropy, gedanken experiments involving the generalized second law, and Bousso's covariant holographic bound. On the other hand, it is not always obvious in a particular example how the system avoids having too many states for given energy, and hence violating the bound. We analyze in detail several purported counterexamples of this type (involving systems made of massive particles, systems at low temperature, systems with high degeneracy of the lowest excited states, systems with degenerate ground states, or involving a particle spectrum with proliferation of nearly massless species), and exhibit in each case the mechanism behind the bound's efficacy.Comment: LaTeX, 10 pages. Contribution to the special issue of Foundation of Physics in honor of Asher Peres; C. Fuchs and A. van der Merwe, ed

    Matching conditions and Higgs mass upper bounds revisited

    Get PDF
    Matching conditions relate couplings to particle masses. We discuss the importance of one-loop matching conditions in Higgs and top-quark sector as well as the choice of the matching scale. We argue for matching scales μ0,tmt\mu_{0,t} \simeq m_t and μ0,Hmax[mt,MH]\mu_{0,H} \simeq max[ m_t, M_H ]. Using these results, the two-loop Higgs mass upper bounds are reanalyzed. Previous results for Λ\Lambda\approx few TeV are found to be too stringent. For Λ=1019\Lambda=10^{19} GeV we find MH<180±4±5M_H < 180 \pm 4\pm 5 GeV, the first error indicating the theoretical uncertainty, the second error reflecting the experimental uncertainty due to mt=175±6m_t=175\pm6 GeV.Comment: 20 pages, 6 figures; uses epsf and rotate macro

    Quasiparticle band structure of infinite hydrogen fluoride and hydrogen chloride chains

    Full text link
    We study the quasiparticle band structure of isolated, infinite HF and HCl bent (zigzag) chains and examine the effect of the crystal field on the energy levels of the constituent monomers. The chains are one of the simplest but realistic models of the corresponding three-dimensional crystalline solids. To describe the isolated monomers and the chains, we set out from the Hartree-Fock approximation, harnessing the advanced Green's function methods "local molecular orbital algebraic diagrammatic construction" (ADC) scheme and "local crystal orbital ADC" (CO-ADC) in a strict second order approximation, ADC(2,2) and CO-ADC(2,2), respectively, to account for electron correlations. The configuration space of the periodic correlation calculations is found to converge rapidly only requiring nearest-neighbor contributions to be regarded. Although electron correlations cause a pronounced shift of the quasiparticle band structure of the chains with respect to the Hartree-Fock result, the bandwidth essentially remains unaltered in contrast to, e.g., covalently bound compounds.Comment: 11 pages, 6 figures, 6 tables, RevTeX4, corrected typoe

    Exact solution of the Zeeman effect in single-electron systems

    Full text link
    Contrary to popular belief, the Zeeman effect can be treated exactly in single-electron systems, for arbitrary magnetic field strengths, as long as the term quadratic in the magnetic field can be ignored. These formulas were actually derived already around 1927 by Darwin, using the classical picture of angular momentum, and presented in their proper quantum-mechanical form in 1933 by Bethe, although without any proof. The expressions have since been more or less lost from the literature; instead, the conventional treatment nowadays is to present only the approximations for weak and strong fields, respectively. However, in fusion research and other plasma physics applications, the magnetic fields applied to control the shape and position of the plasma span the entire region from weak to strong fields, and there is a need for a unified treatment. In this paper we present the detailed quantum-mechanical derivation of the exact eigenenergies and eigenstates of hydrogen-like atoms and ions in a static magnetic field. Notably, these formulas are not much more complicated than the better-known approximations. Moreover, the derivation allows the value of the electron spin gyromagnetic ratio gsg_s to be different from 2. For completeness, we then review the details of dipole transitions between two hydrogenic levels, and calculate the corresponding Zeeman spectrum. The various approximations made in the derivation are also discussed in details.Comment: 18 pages, 4 figures. Submitted to Physica Script

    Nonequilibrium Magnetization Dynamics of Nickel

    Full text link
    Ultrafast magnetization dynamics of nickel has been studied for different degrees of electronic excitation, using pump-probe second-harmonic generation with 150 fs/800 nm laser pulses of various fluences. Information about the electronic and magnetic response to laser irradiation is obtained from sums and differences of the SHG intensity for opposite magnetization directions. The classical M(T)-curve can be reproduced for delay times larger than the electron thermalization time of about 280 fs, even when electrons and lattice have not reached thermal equilibrium. Further we show that the transient magnetization reaches its minimum approx. 50 fs before electron thermalization is completed.Comment: 8 pages, 5 figures, revte

    Geometrical phase effects on the Wigner distribution of Bloch electrons

    Full text link
    We investigate the dynamics of Bloch electrons using a density operator method and connect this approach with previous theories based on wave packets. We study non-interacting systems with negligible disorder and strong spin-orbit interactions, which have been at the forefront of recent research on spin-related phenomena. We demonstrate that the requirement of gauge invariance results in a shift in the position at which the Wigner function of Bloch electrons is evaluated. The present formalism also yields the correction to the carrier velocity arising from the Berry phase. The gauge-dependent shift in carrier position and the Berry phase correction to the carrier velocity naturally appear in the charge and current density distributions. In the context of spin transport we show that the spin velocity may be defined in such a way as to enable spin dynamics to be treated on the same footing as charge dynamics. Aside from the gauge-dependent position shift we find additional, gauge-covariant multipole terms in the density distributions of spin, spin current and spin torque.Comment: 12 pages, 3 figure

    Chern-Simons matrix model: coherent states and relation to Laughlin wavefunctions

    Full text link
    Using a coherent state representation we derive many-body probability distributions and wavefunctions for the Chern-Simons matrix model proposed by Polychronakos and compare them to the Laughlin ones. We analyze two different coherent state representations, corresponding to different choices for electron coordinate bases. In both cases we find that the resulting probability distributions do not quite agree with the Laughlin ones. There is agreement on the long distance behavior, but the short distance behavior is different.Comment: 15 pages, LaTeX; one reference added, abstract and section 5 expanded, typos correcte

    Semi-Classical Description of Antiproton Capture on Atomic Helium

    Full text link
    A semi-classical, many-body atomic model incorporating a momentum-dependent Heisenberg core to stabilize atomic electrons is used to study antiproton capture on Helium. Details of the antiproton collisions leading to eventual capture are presented, including the energy and angular momentum states of incident antiprotons which result in capture via single or double electron ionization, i.e. into [He++pˉ^{++}\,\bar p or He+pˉ^{+}\,\bar p], and the distribution of energy and angular momentum states following the Auger cascade. These final states are discussed in light of recently reported, anomalously long-lived antiproton states observed in liquid He.Comment: 15 pages, 9 figures may be obtained from authors, Revte
    corecore