4 research outputs found

    Discriminating the short-term action of root and foliar application of humic acids on plant growth: emerging role of jasmonic acid

    Get PDF
    Humic substances (HS, fulvic and humic acids) are widely used as fertilizers or plant growth stimulants, although their mechanism of action still remains partially unknown. Humic substances may be applied either directly to the soil or as foliar sprays. Despite both kind of application are commonly used in agricultural practices, most of the studies regarding the elicited response in plants induced by HS are based on the root-application of these substances. The present work aimed at discriminating between the mechanisms of action of foliar application versus root application of a sedimentary humic acid (SHA) on plant development. For this purpose, six markers related to plant phenotype, plant morphology, hormonal balance and root-plasma membrane H+-ATPase were selected. Both application strategies improved the shoot and root growth. Foliar applied- and root applied-SHA shared the capacity to increase the concentration of indole-3-acetic acid in roots and cytokinins in shoots. However, foliar application did not lead to short-term increases in either abscisic acid root-concentration or root-plasma membrane H+-ATPase activity which are, however, two crucial effects triggered by SHA root-application. Both application modes increased the root concentrations of jasmonic acid and jasmonoyl-isoleucine. These hormonal changes caused by foliar application could be a stress-related symptom and connected to the loss of leaves trichomes and the diminution of chloroplasts size seen by scanning electron microscopy. These results support the hypothesis that the beneficial effects of SHA applied to roots or leaves may result from plant adaptation to a mild transient stress caused by SHA application

    Supramolecular arrangement of lignosulfonate-based iron heteromolecular complexes and consequences of their Interaction with Ca2+ at alkaline pH and fe plant root uptake mechanisms

    No full text
    Previous studies have shown that natural heteromolecular complexes might be an alternative to synthetic chelates to correct iron (Fe) deficiency. To investigate the mechanism of action of these complexes, we have studied their interaction with Ca2+ at alkaline pH, Fe-binding stability, Fe-root uptake in cucumber, and chemical structure using molecular modeling. The results show that a heteromolecular Fe complex including citric acid and lignosulfonate as binding ligands (Ls-Cit) forms a supramolecular system in solution with iron citrate interacting with the hydrophobic inner core of the lignosulfonate system. These structural features are associated with high stability against Ca2+ at basic pH. Likewise, unlike Fe-EDDHA, root Fe uptake from Ls-Cit implies the activation of the main root responses under Fe deficiency at the transcriptional level but not at the post-transcriptional level. These results are consistent with the involvement of some plant responses to Fe deficiency in the plant assimilation of complexed Fe in Ls-Cit under field conditions

    The molecular conformation, but not disaggregation, of humic acid in water solution plays a crucial role in promoting plant development in the natural environment.

    No full text
    Many studies have shown the capacity of soil humic substances (HS) to improve plant growth in natural ecosystems. This effect involves the activation of different processes within the plant at different coordinated molecular, biochemical, and physiological levels. However, the first event triggered by plant root-HS interaction remains unclear. Some studies suggest the hypothesis that the interaction of HS with root exudates involves relevant modification of the molecular conformation of humic self-assembled aggregates, including disaggregation, which might be directly involved in the activation of root responses. To investigate this hypothesis, we have prepared two humic acids. A natural humic acid (HA) and a transformed humic acid obtained from the treatment of HA with fungal laccase (HA enz). We have tested the capacity of the two humic acids to affect plant growth (cucumber and Arabidopsis) and complex Cu. Laccase-treatment did not change the molecular size but increased hydrophobicity, molecular compactness and stability, and rigidity of HA enz. Laccase-treatment avoided the ability of HA to promote shoot- and root-growth in cucumber and Arabidopsis. However, it does not modify Cu complexation features. There is no molecular disaggregation upon the interaction of HA and HA enz with plant roots. The results indicate that the interaction with plant roots induced in both HA and laccase-treated HA (HA enz), changes in their structural features that showed higher compactness and rigidity. These events might result from the interaction of HA and HA enz with specific root exudates that can promote intermolecular crosslinking. In summary, the results indicate that the weakly bond stabilized aggregated conformation (supramolecular-like) of HA plays a crucial role in its ability to promote root and shoot growth. The results also indicate the presence of two main types of HS in the rhizosphere corresponding to those non-interacting with plant roots (forming aggregated molecular assemblies) and those produced after interacting with plant root exudates (forming stable macromolecules)

    ResĂşmenes

    No full text
    corecore