8 research outputs found

    ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² пСрСносимых капСль элСктродного ΠΌΠ΅Ρ‚Π°Π»Π»Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ модСлирования ΠΈ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ

    Get PDF
    The nature of the molten electrode metal melting and transfer is the main process parameter of manual metal arc welding (MMA) with coated electrodes. It significantly affects the efficiency of the welding process. For this reason the relevant task is to identify the parameters of the transferred molten electrode metal drops and their further transfer into the weld pool with maximum accuracy. The aim of the given paper is to develop a method and visual representation of the form and the geometrics (volume, area, mass) of a molten electrode metal drop.We have developed the method of simulation modeling and visualization for molten electrode metal drops transfer and their parameters. It allows obtaining highly reliable input data to be used for developing and verification of mathematical models for the thermal fields distribution along the welded item surface. The algorithm is realized as the calculation programs for specifying the molten metal drop parameters and means of its geometrics and space form visualization.We used this method to specify a number of molten electrode metal drop parameters: volume, mass, center-of-gravity position, surface area.We have established that it is possible to conduct the measurements with maximumThe suggested method significantly decreases the labor intensity of experimental studies aimed at specifying the size of electrode metal drops in comparison to the standard methods. When we know the size of the drops under certain welding conditions we can control the drop transfer process, i. e. reduce the heat input into the welded item and produce weld joints with the tailored performance characteristics.ΠžΡΠ½ΠΎΠ²Π½Ρ‹ΠΌ тСхнологичСским ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠΌ процСсса Ρ€ΡƒΡ‡Π½ΠΎΠΉ Π΄ΡƒΠ³ΠΎΠ²ΠΎΠΉ сварки, ΠΏΠΎΠΊΡ€Ρ‹Ρ‚Ρ‹ΠΌ элСктродами, сущСствСнно Π²Π»ΠΈΡΡŽΡ‰ΠΈΠΌ Π½Π° ΡΡ„Ρ„Π΅ΠΊΡ‚ΠΈΠ²Π½ΠΎΡΡ‚ΡŒ Π΅Π³ΠΎ протСкания, являСтся Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€ плавлСния ΠΈ пСрСноса расплавлСнного элСктродного ΠΌΠ΅Ρ‚Π°Π»Π»Π°. ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ Π°ΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½Ρ‹ΠΌ являСтся вопрос максимально Ρ‚ΠΎΡ‡Π½ΠΎΠ³ΠΎ опрСдСлСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² пСрСносимых капСль расплавлСнного элСктродного ΠΌΠ΅Ρ‚Π°Π»Π»Π° ΠΈ ΠΈΡ… ΠΏΠΎΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π³ΠΎ ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄Π° Π² ΡΠ²Π°Ρ€ΠΎΡ‡Π½ΡƒΡŽ Π²Π°Π½Π½Ρƒ. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлась Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ ΠΈ Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ прСдставлСния Ρ„ΠΎΡ€ΠΌΡ‹ ΠΈ гСомСтричСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² (ΠΎΠ±ΡŠΡ‘ΠΌ, ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ, масса) ΠΊΠ°ΠΏΠ»ΠΈ расплавлСнного элСктродного ΠΌΠ΅Ρ‚Π°Π»Π»Π°.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ модСлирования ΠΈ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ пСрСноса капСль расплавлСнного элСктродного ΠΌΠ΅Ρ‚Π°Π»Π»Π° ΠΈ ΠΈΡ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ², Ρ‡Ρ‚ΠΎ ΠΏΠΎΠ·Π²ΠΎΠ»ΠΈΡ‚ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΡ‚ΡŒ Π²Ρ…ΠΎΠ΄Π½Ρ‹Π΅ Π΄Π°Π½Π½Ρ‹Π΅ с высокой ΡΡ‚Π΅ΠΏΠ΅Π½ΡŒΡŽ достовСрности для Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠΈ матСматичСских ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ распрСдСлСния Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½Ρ‹Ρ… ΠΏΠΎΠ»Π΅ΠΉ ΠΏΠΎ повСрхности свариваСмого издСлия ΠΈ Π΅Ρ‘ Π²Π΅Ρ€ΠΈΡ„ΠΈΠΊΠ°Ρ†ΠΈΠΈ. Алгоритм Ρ€Π΅Π°Π»ΠΈΠ·ΠΎΠ²Π°Π½ Π² Π²ΠΈΠ΄Π΅ расчётных ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌ для опрСдСлСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΊΠ°ΠΏΠ»ΠΈ расплавлСнного ΠΌΠ΅Ρ‚Π°Π»Π»Π° ΠΈ срСдств Π²ΠΈΠ·ΡƒΠ°Π»ΡŒΠ½ΠΎΠ³ΠΎ прСдставлСния Π΅Ρ‘ Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ ΠΈ пространствСнной Ρ„ΠΎΡ€ΠΌΡ‹. Π‘ ΠΏΠΎΠΌΠΎΡ‰ΡŒΡŽ Π΄Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚ΠΎΠ΄Π° ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½ ряд ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² капСль расплавлСнного элСктродного ΠΌΠ΅Ρ‚Π°Π»Π»Π°: ΠΎΠ±ΡŠΡ‘ΠΌ, масса, ΠΏΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Ρ†Π΅Π½Ρ‚Ρ€Π° масс, ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ повСрхности.УстановлСно, Ρ‡Ρ‚ΠΎ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ с максимальной Π΄ΠΎΡΡ‚ΠΎΠ²Π΅Ρ€Π½ΠΎΡΡ‚ΡŒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄ΠΈΡ‚ΡŒ измСрСния, ΡƒΠ²Π΅Π»ΠΈΡ‡ΠΈΡ‚ΡŒ число измСряСмых ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ², Π° Ρ‚Π°ΠΊΠΆΠ΅ наглядно ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²ΠΈΡ‚ΡŒ происходящиС процСссы.ΠŸΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠΏΡ€ΠΎΡ‰Π°Π΅Ρ‚ Ρ‚Ρ€ΡƒΠ΄ΠΎΡ‘ΠΌΠΊΠΎΡΡ‚ΡŒ провСдСния ΡΠΊΡΠΏΠ΅Ρ€ΠΈΠΌΠ΅Π½Ρ‚Π°Π»ΡŒΠ½Ρ‹Ρ… исслСдований ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ Ρ€Π°Π·ΠΌΠ΅Ρ€Π° капСль элСктродного ΠΌΠ΅Ρ‚Π°Π»Π»Π° Π² сравнСнии со стандартными ΠΌΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ. Зная Ρ€Π°Π·ΠΌΠ΅Ρ€ капСль ΠΏΡ€ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Ρ‘Π½Π½Ρ‹Ρ… Ρ€Π΅ΠΆΠΈΠΌΠ°Ρ… сварки, ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠΏΡ€Π°Π²Π»ΡΡ‚ΡŒ процСссом каплСпСрСноса, Ρ‚. Π΅. ΡƒΠΌΠ΅Π½ΡŒΡˆΠ°Ρ‚ΡŒ Ρ‚Π΅ΠΏΠ»ΠΎΠ²Π»ΠΎΠΆΠ΅Π½ΠΈΠ΅ Π² свариваСмоС ΠΈΠ·Π΄Π΅Π»ΠΈΠ΅ ΠΈ ΠΏΠΎΠ»ΡƒΡ‡Π°Ρ‚ΡŒ сварныС соСдинСния с Π·Π°Π΄Π°Π½Π½Ρ‹ΠΌΠΈ эксплуатационными свойствами

    Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° конструкции ΠΈΡΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ оборудования, Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΡŽΡ‰Π΅Π³ΠΎ процСсс Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ капСль ΠΌΠΈΠΊΡ€ΠΎ- ΠΈ Π½Π°Π½ΠΎΠ΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°

    Get PDF
    Modeling of velocities and temperatures processes distribution in the plasma-forming channel determining the design features and optimal parameters of the plasma torch nozzle is one of promising directions in development of plasma technologies. The aim of this work was to simulate the processes of velocities and temperature distribution in the plasma-forming channel and to determine the design features and optimal geometric parameters of the plasmatron nozzle Β which Β ensures Β the Β formation Β of Β necessary Β direction Β of Β plasma Β flows for generation of surface waves on the surface of a liquid metal droplet under the influence of the investigated instabilities.One of the main tasks is to consider the process of plasma jet formation and the flow of electric arc plasma. For obtaining small-sized particles one of the main parameters is the plasma flow Β velocity. Β It Β is necessary that the plasma outflow velocity be close to supersonic. An increase of Β the Β supersonic Β speed Β is possible due to design of the plasmatron nozzle especially the design feature and dimensions of the gas channel in which the plasma is formed. Also the modeling took into account dimensions of the plasma torch nozzle, i. e. the device should provide a supersonic plasma flow with the smallest possible geometric dimensions.As a result models of velocities and temperatures distribution in the plasma-forming channel at the minimum and maximum diameters of the channel were obtained. The design features and optimal geometric parameters of the plasmatron have been determined: the inlet diameter is 3 mm, the outlet diameter is 2 mm.The design of the executive equipment has been developed and designed which implements the investigated process of generating droplets of the micro- and nanoscale range. A plasmatron nozzle was manufactured which forms the necessary directions of plasma flows for the formation of surface waves on the metal droplet surface under the influence of instabilities. An algorithm has been developed for controlling of executive equipment that implements the process of generating drops of micro- and nanoscale range.ΠœΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ процСссов распрСдСлСния скоростСй ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ Π² ΠΏΠ»Π°Π·ΠΌΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰Π΅ΠΌ ΠΊΠ°Π½Π°Π»Π΅, ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ конструктивных особСнностСй ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² сопла ΠΏΠ»Π°Π·ΠΌΠΎΡ‚Ρ€ΠΎΠ½Π° являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· пСрспСктивных Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½Ρ‹Ρ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлось ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ процСссов распрСдСлСния скоростСй ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ Π² ΠΏΠ»Π°Π·ΠΌΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰Π΅ΠΌ ΠΊΠ°Π½Π°Π»Π΅ ΠΈ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ конструктивных особСнностСй ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… гСомСтричСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² сопла ΠΏΠ»Π°Π·ΠΌΠΎΡ‚Ρ€ΠΎΠ½Π°, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°Ρ‚ΡŒ Ρ„ΠΎΡ€ΠΌΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Ρ… Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½Ρ‹Ρ… ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ² для образования Π½Π° повСрхности ΠΊΠ°ΠΏΠ»ΠΈ ΠΆΠΈΠ΄ΠΊΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚Π°Π»Π»Π° повСрхностных Π²ΠΎΠ»Π½ ΠΏΠΎΠ΄ дСйствиСм исслСдуСмых нСустойчивостСй.Одной ΠΈΠ· Π³Π»Π°Π²Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ являСтся рассмотрСниС процСсса формирования ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½ΠΎΠΉ струи ΠΈ тСчСния элСктродуговой ΠΏΠ»Π°Π·ΠΌΡ‹. Для получСния ΠΌΠ΅Π»ΠΊΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½Ρ‹Ρ… частиц ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· Π³Π»Π°Π²Π½Ρ‹Ρ… ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² являСтся ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ тСчСния ΠΏΠ»Π°Π·ΠΌΡ‹. НСобходимо, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ истСчСния ΠΏΠ»Π°Π·ΠΌΡ‹ Π±Ρ‹Π»Π° Π±Π»ΠΈΠ·ΠΊΠ° ΠΊ свСрхзвуковой. Π£Π²Π΅Π»ΠΈΡ‡Π΅Π½ΠΈΠ΅ скорости Π΄ΠΎ свСрхзвуковой Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π΄ΠΎΠ±ΠΈΡ‚ΡŒΡΡ Π·Π° счёт конструкции сопла ΠΏΠ»Π°Π·ΠΌΠΎΡ‚Ρ€ΠΎΠ½Π°, Π° ΠΈΠΌΠ΅Π½Π½ΠΎ конструктивной ΠΎΡΠΎΠ±Π΅Π½Π½ΠΎΡΡ‚ΡŒΡŽ ΠΈ Ρ€Π°Π·ΠΌΠ΅Ρ€Π°ΠΌΠΈ Π³Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ ΠΊΠ°Π½Π°Π»Π°, Π² ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ образуСтся ΠΏΠ»Π°Π·ΠΌΠ°. Π’Π°ΠΊΠΆΠ΅ ΠΏΡ€ΠΈ ΠΌΠΎΠ΄Π΅Π»ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠΈ ΡƒΡ‡ΠΈΡ‚Ρ‹Π²Π°Π»ΠΈΡΡŒ Ρ€Π°Π·ΠΌΠ΅Ρ€Ρ‹ сопла ΠΏΠ»Π°Π·ΠΌΠΎΡ‚Ρ€ΠΎΠ½Π°, Ρ‚. Π΅. устройство Π΄ΠΎΠ»ΠΆΠ½ΠΎ ΠΎΠ±Π΅ΡΠΏΠ΅Ρ‡ΠΈΠ²Π°Ρ‚ΡŒ свСрхзвуковоС Ρ‚Π΅Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ»Π°Π·ΠΌΡ‹ ΠΏΡ€ΠΈ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΠΌΠ΅Π½ΡŒΡˆΠΈΡ… гСомСтричСских Ρ€Π°Π·ΠΌΠ΅Ρ€Π°Ρ….Π’ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π΅ исслСдований ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Ρ‹ ΠΌΠΎΠ΄Π΅Π»ΠΈ процСссов распрСдСлСния скоростСй ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ Π² ΠΏΠ»Π°Π·ΠΌΠΎΠΎΠ±Ρ€Π°Π·ΡƒΡŽΡ‰Π΅ΠΌ ΠΊΠ°Π½Π°Π»Π΅ ΠΏΡ€ΠΈ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… ΠΈ ΠΌΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Ρ… Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€Π°Ρ… ΠΊΠ°Π½Π°Π»Π°. ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½Ρ‹ конструктивныС особСнности ΠΈ ΠΎΠΏΡ‚ΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹Π΅ гСомСтричСскиС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Ρ‹ сопла ΠΏΠ»Π°Π·ΠΌΠΎΡ‚Ρ€ΠΎΠ½Π°: Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ Π½Π° Π²Ρ…ΠΎΠ΄Π΅ 3 ΠΌΠΌ, Π΄ΠΈΠ°ΠΌΠ΅Ρ‚Ρ€ Π²Ρ‹Ρ…ΠΎΠ΄Π½ΠΎΠΉ 2 ΠΌΠΌ.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° ΠΈ спроСктирована конструкция ΠΈΡΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ оборудования, Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΡŽΡ‰Π°Ρ исслСдуСмый процСсс Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ капСль ΠΌΠΈΠΊΡ€ΠΎ- ΠΈ Π½Π°Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°. Π˜Π·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΎ сопло ΠΏΠ»Π°Π·ΠΌΠΎΡ‚Ρ€ΠΎΠ½Π°, Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΡŽΡ‰Π΅Π΅ Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΡ‹Π΅ направлСния ΠΏΠ»Π°Π·ΠΌΠ΅Π½Π½Ρ‹Ρ… ΠΏΠΎΡ‚ΠΎΠΊΠΎΠ² для образования Π½Π° повСрхности ΠΊΠ°ΠΏΠ»ΠΈ ΠΆΠΈΠ΄ΠΊΠΎΠ³ΠΎ ΠΌΠ΅Ρ‚Π°Π»Π»Π° повСрхностных Π²ΠΎΠ»Π½ ΠΏΠΎΠ΄ дСйствиСм исслСдуСмых нСустойчивостСй. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½ Π°Π»Π³ΠΎΡ€ΠΈΡ‚ΠΌ управлСния ΠΈΡΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ ΠΎΠ±ΠΎΡ€ΡƒΠ΄ΠΎΠ²Π°Π½ΠΈΠ΅ΠΌ, Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΡŽΡ‰Π΅ΠΌ процСсс Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ капСль ΠΌΠΈΠΊΡ€ΠΎ- ΠΈ Π½Π°Π½ΠΎΡ€Π°Π·ΠΌΠ΅Ρ€Π½ΠΎΠ³ΠΎ Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°

    ΠžΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² пСрСносимых капСль элСктродного ΠΌΠ΅Ρ‚Π°Π»Π»Π° ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΈΠΌΠΈΡ‚Π°Ρ†ΠΈΠΎΠ½Π½ΠΎΠ³ΠΎ модСлирования ΠΈ Π²ΠΈΠ·ΡƒΠ°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ

    Get PDF
    The nature of the molten electrode metal melting and transfer is the main process parameter of manual metal arc welding (MMA) with coated electrodes. It significantly affects the efficiency of the welding process. For this reason the relevant task is to identify the parameters of the transferred molten electrode metal drops and their further transfer into the weld pool with maximum accuracy. The aim of the given paper is to develop a method and visual representation of the form and the geometrics (volume, area, mass) of a molten electrode metal drop. We have developed the method of simulation modeling and visualization for molten electrode metal drops transfer and their parameters. It allows obtaining highly reliable input data to be used for developing and verification of mathematical models for the thermal fields distribution along the welded item surface. The algorithm is realized as the calculation programs for specifying the molten metal drop parameters and means of its geometrics and space form visualization. We used this method to specify a number of molten electrode metal drop parameters: volume, mass, center-of-gravity position, surface area. We have established that it is possible to conduct the measurements with maximum The suggested method significantly decreases the labor intensity of experimental studies aimed at specifying the size of electrode metal drops in comparison to the standard methods. When we know the size of the drops under certain welding conditions we can control the drop transfer process, i. e. reduce the heat input into the welded item and produce weld joints with the tailored performance characteristics

    ΠŸΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠ»Π°Π½Π°Ρ€Π½ΠΎΠ³ΠΎ Ρ„Π΅Ρ€Ρ€ΠΎΠ·ΠΎΠ½Π΄ΠΎΠ²ΠΎΠ³ΠΎ Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠ° ΠΏΠΎ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠ΅Ρ‡Π°Ρ‚Π½Ρ‹Ρ… ΠΏΠ»Π°Ρ‚

    Get PDF
    The development of novel methods, scientific devices and means for measuring magnetic fields generated by ultra-low current is among promising directions in the development of medical equipment and instruments for geodetic surveys and space exploration. The present work is to develop a small sensor capable of detecting weak magnetic fields, which sources are biocurrents, radiation of far space objects and slight fluctuations of the geomagnetic field. Scientists estimate the strength of such magnetic fields as deciles of nanotesla. The key requirements for the sensors of ultra-low magnetic field are: resolution, noise level in the measurement channel, temperature stability, linearity and repeatability of the characteristics from one produced item to another. The aforementioned characteristics can be achieved by using planar technologies and microelectromechanical systems (MEMS) in such advanced sensors. The work describes a complete R&D cycle, from creating the computer model of the sensor under study to manufacturing of a working prototype. To assess the effect of the geometry and material properties, the Jiles–Atherton model is implemented which, unlike the majority of the models used, allows considering the non-linearity of the core, its hysteresis properties and influence of residual magnetization. The dimensions of the developed sensor are 40Γ—20Γ—5 mm, while the technology allows its further diminishment. The sensor has demonstrated the linearity of its properties in the range of magnetic field strength from 0.1 nT to 50 ΞΌT for a rms current of excitation of 1.25 mA at a frequency of 30 kHz. The average sensitivity for the second harmonic is 54 ΞΌV/nT

    Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° конструкции ΠΈΡΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ оборудования, Ρ€Π΅Π°Π»ΠΈΠ·ΡƒΡŽΡ‰Π΅Π³ΠΎ процСсс Π³Π΅Π½Π΅Ρ€Π°Ρ†ΠΈΠΈ капСль ΠΌΠΈΠΊΡ€ΠΎ- ΠΈ Π½Π°Π½ΠΎΠ΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π°

    Get PDF
    Modeling of velocities and temperatures processes distribution in the plasma-forming channel determining the design features and optimal parameters of the plasma torch nozzle is one of promising directions in development of plasma technologies. The aim of this work was to simulate the processes of velocities and temperature distribution in the plasma-forming channel and to determine the design features and optimal geometric parameters of the plasmatron nozzle which ensures the formation of necessary direction of plasma flows for generation of surface waves on the surface of a liquid metal droplet under the influence of the investigated instabilities. One of the main tasks is to consider the process of plasma jet formation and the flow of electric arc plasma. For obtaining small-sized particles one of the main parameters is the plasma flow velocity. It is necessary that the plasma outflow velocity be close to supersonic. An increase of the supersonic speed is possible due to design of the plasmatron nozzle especially the design feature and dimensions of the gas channel in which the plasma is formed. Also the modeling took into account dimensions of the plasma torch nozzle, i. e. the device should provide a supersonic plasma flow with the smallest possible geometric dimensions. As a result models of velocities and temperatures distribution in the plasma-forming channel at the minimum and maximum diameters of the channel were obtained. The design features and optimal geometric parameters of the plasmatron have been determined: the inlet diameter is 3 mm, the outlet diameter is 2 mm. The design of the executive equipment has been developed and designed which implements the investigated process of generating droplets of the micro- and nanoscale range. A plasmatron nozzle was manufactured which forms the necessary directions of plasma flows for the formation of surface waves on the metal droplet surface under the influence of instabilities. An algorithm has been developed for controlling of executive equipment that implements the process of generating drops of micro- and nanoscale range

    ΠŸΡ€ΠΎΠ΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΏΠ»Π°Π½Π°Ρ€Π½ΠΎΠ³ΠΎ Ρ„Π΅Ρ€Ρ€ΠΎΠ·ΠΎΠ½Π΄ΠΎΠ²ΠΎΠ³ΠΎ Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠ° ΠΏΠΎ Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΈ ΠΏΠ΅Ρ‡Π°Ρ‚Π½Ρ‹Ρ… ΠΏΠ»Π°Ρ‚

    Get PDF
    The development of novel methods, scientific devices and means for measuring magnetic fields generated by ultra-low current is among promising directions in the development of medical equipment and instruments for geodetic surveys and space exploration. The present work is to develop a small sensor capable of detecting weak magnetic fields, which sources are biocurrents, radiation of far space objects and slight fluctuations of the geomagnetic field. Scientists estimate the strength of such magnetic fields as deciles of nanotesla.Β The key requirements for the sensors of ultra-low magnetic field are: resolution, noise level in the measurement channel, temperature stability, linearity and repeatability of the characteristics from one produced item to another. The aforementioned characteristics can be achieved by using planar technologies and microelectromechanical systems (MEMS) in such advanced sensors.The work describes a complete R&D cycle, from creating the computer model of the sensor under study to manufacturing of a working prototype. To assess the effect of the geometry and material properties, the Jiles–Atherton model is implemented which, unlike the majority of the models used, allows considering the non-linearity of the core, its hysteresis properties and influence of residual magnetization.The dimensions of the developed sensor are 40Γ—20Γ—5 mm, while the technology allows its further diminishment. The sensor has demonstrated the linearity of its properties in the range of magnetic field strength from 0.1 nT to 50 Β΅T for a rms current of excitation of 1.25 mA at a frequency of 30 kHz. The average sensitivity for the second harmonic is 54 Β΅V/nT.Π Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Π½ΠΎΠ²Ρ‹Ρ… ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ², Π½Π°ΡƒΡ‡Π½Ρ‹Ρ… ΠΏΡ€ΠΈΠ±ΠΎΡ€ΠΎΠ² ΠΈ срСдств для измСрСния ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… ΠΏΠΎΠ»Π΅ΠΉ, создаваСмых свСрхслабыми Ρ‚ΠΎΠΊΠ°ΠΌΠΈ, являСтся ΠΎΠ΄Π½ΠΈΠΌ ΠΈΠ· пСрспСктивных Π½Π°ΠΏΡ€Π°Π²Π»Π΅Π½ΠΈΠΉ Π² Ρ€Π°Π·Π²ΠΈΡ‚ΠΈΠΈ мСдицинской Ρ‚Π΅Ρ…Π½ΠΈΠΊΠΈ, гСодСзичСских ΠΈ космичСских исслСдований. ЦСлью Π΄Π°Π½Π½ΠΎΠΉ Ρ€Π°Π±ΠΎΡ‚Ρ‹ являлась Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° ΠΌΠ°Π»ΠΎΠ³Π°Π±Π°Ρ€ΠΈΡ‚Π½ΠΎΠ³ΠΎ Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠ°, способного Π΄Π΅Ρ‚Π΅ΠΊΡ‚ΠΈΡ€ΠΎΠ²Π°Ρ‚ΡŒ слабыС ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Π΅ поля, источниками ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… ΠΌΠΎΠ³ΡƒΡ‚ Π±Ρ‹Ρ‚ΡŒ Π±ΠΈΠΎΡ‚ΠΎΠΊΠΈ, излучСния Π΄Π°Π»Ρ‘ΠΊΠΈΡ… космичСских ΠΎΠ±ΡŠΠ΅ΠΊΡ‚ΠΎΠ² ΠΈ слабыС Ρ„Π»ΡƒΠΊΡ‚ΡƒΠ°Ρ†ΠΈΠΈ ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля Π·Π΅ΠΌΠ»ΠΈ. Π£Ρ‡Ρ‘Π½Ρ‹Π΅ ΠΎΡ†Π΅Π½ΠΈΠ²Π°ΡŽΡ‚ Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Ρ‹ Ρ‚Π°ΠΊΠΈΡ… ΠΌΠ°Π³Π½ΠΈΡ‚Π½Ρ‹Ρ… ΠΏΠΎΠ»Π΅ΠΉ Π² дСсятыС Π΄ΠΎΠ»ΠΈ нанотСсла.Β Π‘Ρ€Π΅Π΄ΠΈ ΠΊΠ»ΡŽΡ‡Π΅Π²Ρ‹Ρ… Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π½ΠΈΠΉ ΠΊ Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠ°ΠΌ свСрхслабого ΠΌΠ°Π³Π½ΠΈΡ‚Π½ΠΎΠ³ΠΎ поля ΠΌΠΎΠΆΠ½ΠΎ отнСсти Ρ€Π°Π·Ρ€Π΅ΡˆΠ°ΡŽΡ‰ΡƒΡŽ ΡΠΏΠΎΡΠΎΠ±Π½ΠΎΡΡ‚ΡŒ, ΡƒΡ€ΠΎΠ²Π΅Π½ΡŒ ΡˆΡƒΠΌΠΎΠ² Π² ΠΈΠ·ΠΌΠ΅Ρ€ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌ ΠΊΠ°Π½Π°Π»Π΅, Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π½ΡƒΡŽ ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ, Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡ‚ΡŒ ΠΈ ΠΏΠΎΠ²Ρ‚ΠΎΡ€ΡΠ΅ΠΌΠΎΡΡ‚ΡŒ характСристик ΠΎΡ‚ издСлия ΠΊ издСлию. ΠŸΡ€Π΅Π΄Π»Π°Π³Π°Π΅Ρ‚ΡΡ Π΄ΠΎΠ±ΠΈΡ‚ΡŒΡΡ этих характСристик ΠΏΡƒΡ‚Ρ‘ΠΌ примСнСния ΠΏΠ»Π°Π½Π°Ρ€Π½Ρ‹Ρ… Ρ‚Π΅Ρ…Π½ΠΎΠ»ΠΎΠ³ΠΈΠΉ ΠΈ микроэлСктромСханичСских систСм ΠΏΡ€ΠΈ ΠΈΠ·Π³ΠΎΡ‚ΠΎΠ²Π»Π΅Π½ΠΈΠΈ соврСмСнных Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠΎΠ².Π’ Ρ€Π°Π±ΠΎΡ‚Π΅ описан ΠΏΠΎΠ»Π½Ρ‹ΠΉ Ρ†ΠΈΠΊΠ» исслСдования, ΠΎΡ‚ создания ΠΊΠΎΠΌΠΏΡŒΡŽΡ‚Π΅Ρ€Π½ΠΎΠΉ ΠΌΠΎΠ΄Π΅Π»ΠΈ исслСдуСмого Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠ° Π΄ΠΎ изготовлСния Ρ€Π°Π±ΠΎΡ‡Π΅Π³ΠΎ ΠΏΡ€ΠΎΡ‚ΠΎΡ‚ΠΈΠΏΠ°. Для ΠΎΡ†Π΅Π½ΠΊΠΈ влияния гСомСтричСских ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ΠΎΠ² ΠΈ влияния свойств ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π° использована модСль ДТилса‒АтСртона, которая, Π² ΠΎΡ‚Π»ΠΈΡ‡ΠΈΠ΅ ΠΎΡ‚ Π±ΠΎΠ»ΡŒΡˆΠΈΠ½ΡΡ‚Π²Π° ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡ‹Ρ… ΠΌΠΎΠ΄Π΅Π»Π΅ΠΉ, позволяСт ΡƒΡ‡Π΅ΡΡ‚ΡŒ Π½Π΅Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡ‚ΡŒ сСрдСчника, Π΅Π³ΠΎ гистСрСзисныС свойства ΠΈ влияниС остаточной намагничСнности.Π“Π°Π±Π°Ρ€ΠΈΡ‚Ρ‹ Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½ΠΎΠ³ΠΎ Π΄Π°Ρ‚Ρ‡ΠΈΠΊΠ° ΡΠΎΡΡ‚Π°Π²Π»ΡΡŽΡ‚ 40Γ—20Γ—5 ΠΌΠΌ ΠΈ тСхничСски Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ Π΅Π³ΠΎ ΡƒΠΌΠ΅Π½ΡŒΡˆΠ΅Π½ΠΈΠ΅. Π Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π½Ρ‹ΠΉ Π΄Π°Ρ‚Ρ‡ΠΈΠΊ продСмонстрировал Π»ΠΈΠ½Π΅ΠΉΠ½ΠΎΡΡ‚ΡŒ характСристик Π² Π΄ΠΈΠ°ΠΏΠ°Π·ΠΎΠ½Π΅ ΠΎΡ‚ 0,1 Π½Π’Π» Π΄ΠΎ 50 ΠΌΠΊΠ’Π» ΠΏΡ€ΠΈ срСднСквадратичСском Ρ‚ΠΎΠΊΠ΅ возбуТдСния 1,25 мА Π½Π° частотС 30 ΠΊΠ“Ρ†. УсрСднённый коэффициСнт прСобразования ΠΏΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΉ Π³Π°Ρ€ΠΌΠΎΠ½ΠΈΠΊΠ΅ составляСт 54 ΠΌΠΊΠ’/Π½Π’Π»
    corecore